Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the Virasoro algebra as reduced Poisson submanifold of a Kac-Moody algebra on the circle

Author: Gloria Marí Beffa
Journal: Proc. Amer. Math. Soc. 122 (1994), 859-869
MSC: Primary 17B68; Secondary 22E65, 22E67, 58F07
MathSciNet review: 1204369
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show how the Lie-Poisson structure on the dual of the Virasoro algebra can be obtained through a standard Poisson reduction process performed on a Kac-Moody algebra on the circle. We use the geometrical idea of the process to establish some relation between transverse structures on both Poisson manifolds.

References [Enhancements On Off] (What's this?)

  • [1] M. Adler, On a trace functional for formal pseudo-differential operators and the symplectic structure of the KdV, Invent. Math. 50 (1979), 219-248. MR 520927 (80i:58026)
  • [2] M. Antonowicz and A. P. Fordy, Hamiltonian structure of nonlinear evolution equations, Soliton theory: a survey of results, Manchester Univ. Press, New York, 1990. MR 1090594
  • [3] P. Casati and M. Pedroni, Drinfeld-Sokolov reduction on a simple Lie algebra from a bi-Hamiltonian point of view, Lett. Math. Phys. 25 (1992), 89-101. MR 1182028 (93k:58087)
  • [4] V. G. Drinfel'd and V. V. Sokolov, Lie algebras and equations of KdV type, J. Soviet Math. 30 (1985), 1975-2036.
  • [5] I. M. Gel'fand and L. A. Dikii, A family of Hamiltonian structures connected with integrable nonlinear differential equations, I. M. Gelfand, Collected Papers, vol. 1, Springer-Verlag, New York, 1987.
  • [6] B. A. Khesin, Invariant of Hamiltonian KdV structures, Comm. Moscow Math. Soc. (1990). MR 1050945 (91d:58094)
  • [7] T. G. Khovanova, The Gel'fand-Dikii bracket Lie algebras and the Virasoro algebra, Functional Anal. Appl. 20 (1986), 89-90. MR 878057 (88f:17022)
  • [8] A. A. Kirillov, Infinite dimensional groups: their representations, orbits, invariants, Proc. Internat. Congress of Math., Helsinki, 1978.
  • [9] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467-490. MR 0235310 (38:3620)
  • [10] J. Marsden and T. Ratiu, Reduction of Poisson manifolds, Lett. Math. Phys. 11 (1986), 161-169. MR 836071 (87h:58067)
  • [11] G. Marí Beffa, A transverse structure for the Lie-Poisson bracket on the dual of the Virasoro algebra, preprint, 1991. MR 1256176 (94m:58120)
  • [12] V. Yu. Ovsienko and B. A. Khesin, Symplectic leaves of the Gelfand-Dikii brackets and homotopy classes of nondegenerate curves, Funktsional Anal. i Prilozhen 24 (1990), 38-47; English transl. in Functional Anal. Appl. 24 (1990). MR 1052266 (91f:58044)
  • [13] A. Pressley and G. Segal, Loop groups, Clarendon Press, Oxford, 1986. MR 900587 (88i:22049)
  • [14] A. G. Reiman and M. A. Semenov-Tjan-Sanskii, Current algebras and nonlinear partial differential equations, Soviet Math. Dokl. 21 (1985), 2. MR 575222 (81k:58037)
  • [15] A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), 523-557. MR 723816 (86i:58059)
  • [16] E. Witten, Coadjoint orbits of the Virasoro group, Comm. Math. Phys. 114 (1988), 1-53. MR 925520 (89c:22038)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 17B68, 22E65, 22E67, 58F07

Retrieve articles in all journals with MSC: 17B68, 22E65, 22E67, 58F07

Additional Information

Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society