Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Pre-frame operators, Besselian frames, and near-Riesz bases in Hilbert spaces

Author: James R. Holub
Journal: Proc. Amer. Math. Soc. 122 (1994), 779-785
MSC: Primary 46C05; Secondary 46B15, 47A99
MathSciNet review: 1204376
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A problem of enduring interest in connection with the study of frames in Hubert space is that of characterizing those frames which can essentially be regarded as Riesz bases for computational purposes or which have certain desirable properties of Riesz bases. In this paper we study several aspects of this problem using the notion of a pre-frame operator and a model theory for frames derived from this notion. In particular, we show that the deletion of a finite set of vectors from a frame $ \{ {x_n}\} _{n = 1}^\infty $ leaves a Riesz basis if and only if the frame is Besselian (i.e., $ {\sum} _{n = 1}^\infty\,{a_n}{x_n} $ converges $ \Leftrightarrow ({a_n}) \in {l^2}$).

References [Enhancements On Off] (What's this?)

  • [1] I. Daubechies, Frames of coherent states, phase space localisation, and signal analysis (to appear).
  • [2] I. Daubechies, A. Grossman, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271-1283. MR 836025 (87e:81089)
  • [3] R. Duffin and A. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. MR 0047179 (13:839a)
  • [4] N. Dunford and J. Schwartz, Linear operators, I, Interscience, New York, 1963. MR 0188745 (32:6181)
  • [5] C. Heil, Wavelets and frames, Signal Processing, Part I, IMA Vol. Math. Appl., vol. 22, Springer-Verlag, Berlin, 1990, pp. 147-160. MR 1044603 (91b:42050)
  • [6] C. Heil, Wiener amalgam spaces in generalized harmonic analysis and wavelet theory, Ph.D. Dissertation, University of Maryland, College Park, MD, 1990.
  • [7] A. Janssen, Bargmann transform, Zak transform, and coherent states, J. Math. Phys. 23 (1982), 720-731. MR 655886 (84h:81041)
  • [8] J. Retherford and J. Holub, The stability of bases in Banach and Hilbert spaces, J. Reine Angew. Math. 246 (1971), 136-146. MR 0291776 (45:867)
  • [9] J. Schatten, Norm ideals of completely continuous operators, Springer-Verlag, Berlin, 1970. MR 0257800 (41:2449)
  • [10] M. Schechter, Principles of functional analysis, Academic Press, New York, 1971. MR 0445263 (56:3607)
  • [11] I. Singer, Bases in Banach spaces. I, Springer-Verlag, Berlin, 1970. MR 0298399 (45:7451)
  • [12] J. Zak, Finite translations in solid state physics, Phys. Rev. Lett. 19 (1967), 1385-1397.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46C05, 46B15, 47A99

Retrieve articles in all journals with MSC: 46C05, 46B15, 47A99

Additional Information

Keywords: Frame, Riesz basis, Fredholm operator
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society