THE DEGREE OF REGULARITY OF A QUASICONFORMAL MAPPING

PEKKA KOSKELA

(Communicated by Albert Baernstein II)

Abstract. T. Iwaniec has conjectured that the derivative of a locally α-Hölder continuous quasiconformal mapping of \mathbb{R}^n is locally integrable to any power $p < \frac{n}{1-\alpha}$. We disprove this conjecture by producing examples of quasiconformal mappings of the plane that are uniformly Hölder continuous with exponent $\frac{1}{2} < \alpha < 1$ but whose derivatives are not locally integrable to the power $\frac{1}{1-\alpha}$.

1. Introduction

Recall that a homeomorphism f of a domain $D \subseteq \mathbb{R}^n$ onto a domain $D' \subseteq \mathbb{R}^n$ is K-quasiconformal if $f \in W^{1,n}_{\text{loc}}(D)$ and $|f'(x)|^n \leq Kj_f(x)$ holds a.e. in D; here $|f'(x)|$ is the operator norm of the formal derivative $f'(x)$ of f. We call f quasiconformal if f is K-quasiconformal for some K. Gehring proved in his celebrated paper [G3] that, in fact, $f \in W^{1,p}_{\text{loc}}(D)$ for some $p = p(n, K) > n$ (in the plane this result is due to Bojarski [B]) whenever f is a quasiconformal mapping of a domain $D \subseteq \mathbb{R}^n$. Gehring and Reich have conjectured [GR; G2; I, 9.1] that a K-quasiconformal mapping f belongs to $W^{1,p}_{\text{loc}}(D)$ for all $1 < p < \frac{nK}{K-1}$.

Since K-quasiconformal mappings are locally Hölder continuous [G1] with exponent $\frac{1}{K}$, the familiar Sobolev embedding [GT, Theorem 7.26] indicates that the above local Hölder continuity exponent coincides with the exponent that would be implied by the local integrability of the derivative of f to the power $\frac{nK}{K-1}$. This motivates the following conjecture due to Iwaniec.

Conjecture [I, 9.2]. If a quasiconformal mapping f of a domain $D \subseteq \mathbb{R}^n$ is locally Hölder continuous with exponent $0 < \alpha < 1$, then $f \in W^{1,p}_{\text{loc}}(D)$ for all $1 \leq p < \frac{n}{1-\alpha}$.

Thus the Sobolev embedding is conjectured to be essentially invertible in the class of quasiconformal mappings regardless of the dilatation K of the mapping in question. Unfortunately, this conjecture, which would yield the Gehring and Reich conjecture, is false.

Received by the editors August 3, 1992 and, in revised form, February 15, 1993.

1991 Mathematics Subject Classification. Primary 30C65.

Key words and phrases. Quasiconformal mapping, Sobolev embedding, global integrability of the derivative.

1K. Astala has recently verified the Gehring and Reich conjecture in the plane.

©1994 American Mathematical Society
0002-9939/94 $1.00 + .25$ per page

769
Theorem. For each \(\frac{1}{2} < \alpha < 1 \) there is a quasiconformal mapping \(f \) of the plane such that \(f \) is uniformly Hölder continuous with exponent \(\alpha \) but the derivative of \(f \) fails to be locally integrable with exponent \(\frac{1}{1-\alpha} \).

The above theorem immediately disproves Iwaniec's conjecture for \(\frac{1}{2} < \alpha < 1 \). For the other values, one only needs to observe that our theorem guarantees for any \(p > 2 \) the existence of a plane quasiconformal mapping \(f \) that is locally Hölder continuous with exponent \(\frac{1}{2} \) and such that the derivative of \(f \) fails to be integrable to the power \(p \); hence Iwaniec's conjecture fails for \(0 < \alpha \leq \frac{1}{2} \) as well.

The argument we employ for the proof of our theorem is as follows. First we construct a "bad" quasisymmetric mapping \(g \) of the real line onto a von Koch-type snowflake quasicircle (cf. [A; T2, p. 151]). Then, employing results of Tukia [T1], we obtain a quasiconformal mapping \(f \) of the plane that extends \(g \). This extension will be \(C^1 \)-smooth outside \(\mathbb{R} \), but the derivative of the extension blows up uniformly when we approach \(\mathbb{R} \).

We wish to point out that our construction is fairly standard. Nevertheless, applications of this type seem to have stayed unnoticed; we will employ our construction also in a forthcoming work [KKM] to show sharpness of Radó-type theorems for solutions to degenerate elliptic partial differential equations.

2. Proof of Theorem

Recall that an embedding \(g : \mathbb{R} \to \mathbb{C} \) is quasisymmetric if there is a constant \(C \) such that
\[
|g(x) - g(y)| \leq C |g(x) - g(w)|
\]
whenever \(x, y, w \in \mathbb{R} \) satisfy \(|x - y| \leq |x - w| \). By the Beurling–Ahlfors extension theorem each quasisymmetric \(g \) with \(g(\mathbb{R}) = \mathbb{R} \) extends to a quasiconformal mapping of the plane. The main ingredient in the proof of our theorem is the following similar extension result due to Tukia [T1].

2.1. Theorem [T1]. If \(g : \mathbb{R} \to \mathbb{C} \) is quasisymmetric, then \(g \) has a quasiconformal extension \(f : \mathbb{C} \to \mathbb{C} \) such that \(f \) is \(C^1 \) in \(\mathbb{C} \setminus \mathbb{R} \) and
\[
C^{-1} |f'(x + iy)| \leq \frac{|f(x + y) - f(x - y)|}{|y|} \leq C |f'(x + iy)|
\]
for some fixed constant \(C \) and each \(x + iy \in \mathbb{C} \setminus \mathbb{R} \).

Now we construct an appropriate quasisymmetric \(g \). This construction appears to be folklore (cf. [A; FM; M; T2, p. 151]). Nevertheless, we sketch the necessary steps for the convenience of the reader. Fix \(\frac{1}{4} < t < \frac{1}{2} \), and let \(a_1 = 0, \quad a_2 = t, \quad a_3 = \frac{1}{2} + i(t - \frac{1}{4})^{1/2}, \quad a_4 = 1 - t, \quad a_5 = 1 \). Then the length of each line segment \(\overline{a_j a_{j+1}} \), \(j = 1, 2, 3 \), is \(t \). Next, let \(\sigma_j \), \(j = 1, \ldots, 4 \), be similarities which map the line segment \(\overline{a_1 a_2} \) onto \(\overline{a_j a_{j+1}} \) with \(\sigma_j(a_1) = a_j \).

For a set \(A \) in the plane write \(\sum(A) = \bigcup_1^4 \sigma_j(A) \), and for \(p > 1 \) set \(\sum^p(\overline{a_1 a_5}) = \sum(\sum^{p-1}(\overline{a_1 a_5})) \). Then, for each \(p \geq 1 \), \(\sum^p(\overline{a_1 a_5}) \) consists of \(4^p \) line segments \(I_k \) of length \(t^p \). Assume that they are in order on \(\sum^p(\overline{a_1 a_5}) \) with \(0 \in I_1 \). Write \(I_k = [(k - 1)4^{-p}, k4^{-p}] \), and pick a homeomorphism \(h_p : [0, 1] \to \sum^p(\overline{a_1 a_5}) \) such that \(h_p \) is affine in each \(I_k \) with \(h_p(I_k) = J_k \). Then the mappings \(h_p \) converge to a homeomorphism \(h : [0, 1] \to h([0, 1]) := \gamma \), with
$h(4^k x) = (\frac{1}{4})^k h(x)$ whenever $0 \leq x \leq 4^k x \leq 1$. Moreover, γ_t is the unique compact set $A \subset \mathbb{C}$ with $\sum(A) = A$ (see [H]) and γ_t is the limit of the iterated arcs $\sum^\infty_{t=1} (A_t A_{t+1})$ in the Hausdorff metric. In fact, $\gamma_{1/3}$ is the familiar von Koch curve and, for all $\frac{1}{4} < t < \frac{1}{2}$, γ_t is a snowflake-type curve.

Notice that $t\gamma_t$ is a subarc of γ_t and likewise γ_t is a subarc of $\frac{1}{t}\gamma_t$. Thus, by defining

$$\gamma = \bigcup_{j \geq 0} \left(\frac{1}{t} \right)^j (\gamma_t \cup (-\gamma_t)),$$

we obtain an arc γ through ∞. To complete the construction, we set

$$g(4^k x) = \left(\frac{1}{t} \right)^k h(x)$$

for $k \geq 1$ and $0 \leq x \leq 1$, and define $g(x)$, $x < 0$, by symmetry. Then g is a homeomorphism of \mathbb{R} onto γ, and it is straightforward to check (see the calculations in [M, pp. 102-103]; cf. also [FM]) that

$$|x - y|^\alpha/C \leq |g(x) - g(y)| \leq C|x - y|^\alpha$$

for some constant C for all $x, y \in \mathbb{R}$, where $\alpha = \log(\frac{1}{t})/\log 4$. In conclusion, we obtain

2.3. Lemma. For each $\frac{1}{2} < \alpha < 1$ there is an embedding $g : \mathbb{R} \to \mathbb{C}$ such that

$$(2.4) \quad |x - y|^\alpha/C \leq |g(x) - g(y)| \leq C|x - y|^\alpha$$

for some fixed constant C for all $x, y \in \mathbb{R}$.

Proof of Theorem. Fix $\frac{1}{2} < \alpha < 1$, and let g be a mapping as in Lemma 2.3. Then g is quasisymmetric, and hence Theorem 2.1 provides us with a quasiconformal mapping f of the plane extending g. Next, from (2.2) and (2.4) we conclude that

$$(2.5) \quad |f'(x + iy)|/C \leq |y|^{\alpha-1} \leq C|f'(x + iy)|$$

for all $x + iy$ in $\mathbb{C} \setminus \mathbb{R}$, where C is a fixed constant. Hence we deduce that $|f'|^{1/(1-\alpha)}$ fails to be locally integrable.

We are left to verify the uniform Hölder continuity of f. Fix points $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ in the upper half plane. Integrating the estimate

$$(2.6) \quad |f'(x + iy)| \leq C|y|^{\alpha-1}$$

we arrive at

$$(2.7) \quad |f(z_j) - f(x_j)| \leq C\alpha^{-1}y_j^\alpha, \quad j = 1, 2.$$

By (2.6) we may assume that $y_1 \geq y_2$ and that $z_2 \notin B(z_1, y_1/2)$. Then

$$(2.8) \quad y_1 \leq 2|z_1 - z_2|,$$

and the desired estimate

$$(2.9) \quad |f(z_1) - f(z_2)| \leq C|z_1 - z_2|^\alpha$$

for some constant C follows by the triangle inequality from (2.4), (2.7), and (2.8). Analogously, (2.9) holds for z_1, z_2 in the lower half plane, and thus the
triangle inequality and the continuity of f verify (2.6) for all z_1, z_2 in the plane. The proof is complete. □

2.10. Concluding remarks. (1) Tukia [T2] has used the above construction for $t = \frac{1}{3}$ to produce a quasiconformal group that is not isomorphic to a Möbius group. Recently, Semmes [S] has employed a similar construction in a counterexample related to his work with G. David on strong A_∞-weights.

(2) The proof of our theorem reveals that some global integrability results arrived at in [AK] are sharp. We hope to return to this question in the future.

References

Department of Mathematics, University of Jyväskylä, P.O. Box 35, SF-40351 Jyväskylä, Finland

Current address: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

E-mail address: koskela@math.lsa.umich.edu