Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Continuity of derivations on $ H\sp \ast$-algebras


Author: A. R. Villena
Journal: Proc. Amer. Math. Soc. 122 (1994), 821-826
MSC: Primary 46K70; Secondary 17A36, 46K15
DOI: https://doi.org/10.1090/S0002-9939-1994-1207543-9
MathSciNet review: 1207543
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the separating subspace for a derivation on a nonassociative $ {H^ \ast }$-algebra is contained in the annihilator of the algebra. In particular, derivations on nonassociative $ {H^\ast}$-algebras with zero annihilator are continuous.


References [Enhancements On Off] (What's this?)

  • [1] W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386. MR 0013235 (7:126c)
  • [2] V. K. Balachandran, Real $ {L^ \ast }$-algebras, J. Pure Appl. Math. 3 (1972), 1224-1246. MR 0347920 (50:420)
  • [3] V. K. Balachandran and N. Swaminathan, Real $ {H^\ast}$-algebras, J. Funct. Anal. 65 (1986), 64-75. MR 819174 (87c:46063)
  • [4] M. Cabrera, J. Martínez, and A. Rodríguez, Nonassociative real $ {H^\ast}$-algebras, Publ. Mat. 32 (1988), 267-471. MR 975901 (90a:46147)
  • [5] -, Mal'cev $ {H^\ast}$-algebras, Math. Proc. Cambridge Philos. Soc. 103 (1988), 463-471. MR 932670 (89g:17019)
  • [6] -, A note on real $ {H^\ast}$-algebras, Math. Proc. Cambridge Philos. Soc. 105 (1989), 131-132. MR 966147 (90e:46046)
  • [7] -, Structurable $ {H^\ast}$-algebras, J. Algebra 147 (1992), 19-62. MR 1154673 (93c:46105)
  • [8] M. Cabrera and A. Rodríguez, Extended centroid and central closure of semiprime normed algebras: a first approach, Comm. Algebra 18 (1990), 2293-2326. MR 1063136 (91h:46090)
  • [9] J. A. Cuenca, A. García, and C. Martín, Structure theory for $ {L^\ast}$-algebras, Math. Proc. Cambridge Philos. Soc. 107 (1990), 361-365. MR 1027788 (90k:46152)
  • [10] J. A. Cuenca and A. Rodríguez, Structure theory for noncommutative Jordan $ {H^\ast}$-algebras, J. Algebra 106 (1987), 1-14. MR 878465 (88e:17026)
  • [11] -, Isomorphisms of $ {H^\ast}$-algebras, Math. Proc. Cambridge Philos. Soc. 97 (1985), 93-99.
  • [12] T. S. Erickson, W. S. Martindale III, and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), 49-63. MR 0382379 (52:3264)
  • [13] P. de la Harpe, Classification des $ {L^\ast}$-algebras semi-simples réelles séparables, C. R. Acad. Sci. Paris Ser. I Math. 272 (1971), 1559-1561.
  • [14] -, Classical Banach-Lie algebras and Banach-Lie groups of operators in Hilbert space, Lecture Notes in Math., vol. 285, Springer-Verlag, Berlin, 1972. MR 0476820 (57:16372)
  • [15] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073. MR 0239419 (39:776)
  • [16] K. I. Kaplansky, Dual rings, Amer. Math. 49 (1948), 689-701. MR 0025452 (10:7b)
  • [17] Pérez de Guzmán, Structure theorem for alternative $ {H^\ast}$-algebras, Math. Proc. Cambridge Philos. Soc. 94 (1983), 437-446.
  • [18] A. Rodríguez, Jordan axioms for $ {C^ \ast }$-algebras, Manuscripta Math. 61 (1988), 297-314. MR 949820 (89j:46058)
  • [19] J. R. Schue, Hilbert space methods in the theory of Lie algebras, Trans. Amer. Math. Soc. 95 (1960), 69-80. MR 0117575 (22:8352)
  • [20] -, Cartan decomposition for $ {L^\ast}$-algebras, Trans. Amer. Math. Soc. 98 (1961), 334-349.
  • [21] I. Unsain, Classification of the simple separable real $ {L^\ast}$-algebras, J. Differential Geom. 7 (1972), 423-451. MR 0325721 (48:4068)
  • [22] A. R. Villena, Continuity of derivations on a complete normed alternative algebra, J. Inst. Math. Comput. Sci. Math. Ser. 3 (1990), 99-106. MR 1105482 (92d:46131)
  • [23] C. Viola Devapakkiam, Hilbert space methods in the theory of Jordan algebras, Math. Proc. Cambridge Philos. Soc. 78 (1975), 293-300. MR 0380430 (52:1330)
  • [24] C. Viola Devapakkiam and P. S. Rema, Hilbert space methods in the theory of Jordan algebras. II, Math. Proc. Cambridge Philos. Soc. 79 (1976), 307-319. MR 0404360 (53:8162)
  • [25] M. A. Youngson, Hermitian operators on Banach Jordan algebras, Proc. Edinburgh Math. Soc. (2) 22 (1979), 93-104. MR 549462 (80j:46090)
  • [26] B. Zalar, Continuity of derivations on Mal'cev $ {H^\ast}$-algebras, Math. Proc. Cambridge Philos. Soc. 110 (1991), 455-459. MR 1120480 (92j:46099)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46K70, 17A36, 46K15

Retrieve articles in all journals with MSC: 46K70, 17A36, 46K15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1207543-9
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society