Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Every uncountable abelian group admits a nonnormal group topology


Author: F. Javier Trigos-Arrieta
Journal: Proc. Amer. Math. Soc. 122 (1994), 907-909
MSC: Primary 22B05; Secondary 54A10, 54A25, 54H11
DOI: https://doi.org/10.1090/S0002-9939-1994-1209100-7
MathSciNet review: 1209100
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If G is a locally compact Abelian group, let $ {{\mathbf{G}}^ + }$ denote the underlying group of G equipped with the weakest topology that makes all the continuous characters of G continuous. Thus defined, $ {{\mathbf{G}}^ + }$ is a totally bounded topological group. We prove:

Theorem. $ {{\mathbf{G}}^ + }$ is normal if and only if G is $ \sigma $-compact.

When G is discrete, this theorem answers in the negative a question posed in 1990 by E. van Douwen, and it partially solves a problem posed in 1945 by A. Markov.


References [Enhancements On Off] (What's this?)

  • [1] W. W. Comfort, K. H. Hofmann, and D. Remus, Recent developments in topological groups and topological semigroups, Recent Progress in General Topology (M. Husek and Jan van Mill, eds.), North-Holland, Amsterdam, 1992, pp. 57-144. MR 1229123
  • [2] E. van Douwen, The maximal totally bounded group topology on G and the biggest minimal G-space, for Abelian groups G, Topology Appl. 34 (1991), 69-91. MR 1035461 (91d:54044)
  • [3] L. Fuchs, Infinite Abelian groups, Vol. I, Pure Appl. Math., vol. 36, Academic Press, New York and London, 1970. MR 0255673 (41:333)
  • [4] I. Glicksberg, Uniform boundedness on groups, Canad. J. Math. 14 (1962), 269-276. MR 0155923 (27:5856)
  • [5] K. P. Hart and J. van Mill, Discrete sets and the maximal totally bounded group topology, J. Pure Appl. Algebra 70 (1991), 73-80. MR 1100506 (92c:20101)
  • [6] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. I, Grundlehren Math. Wiss., vol. 115, Springer-Verlag, Berlin, Göttingen, and Heidelberg, 1963. MR 551496 (81k:43001)
  • [7] L. J. Kulikov, On the theory of Abelian groups of arbitrary cardinality, Mat. Sb. 9 (1941), 517-547. (Russian)
  • [8] A. A. Markov, On free topological groups, Izv. Akad. Nauk SSSR Ser. Math. 9 (1945), 3-64; English transl., Amer. Math. Soc. Transl. Ser. 1, vol. 8, Amer. Math. Soc., Providence, RI, 1962, pp. 195-272. MR 0012301 (7:7b)
  • [9] K. A. Ross and K. R. Stromberg, Baire sets and Baire measures, Ark. Mat. 6 (1967), 151-160. MR 0196029 (33:4224)
  • [10] F. J. Trigos-Arrieta, Continuity, boundedness, connectedness and the Lindelöf property for topological groups, J. Pure Appl. Algebra 70 (1991), 199-210. MR 1100517 (92h:22009)
  • [11] -, Pseudocompactness on groups, General topology and its applications, Fifth Northeast Conference, Marcel Dekker, New York, 1991, pp. 369-378. MR 1142814 (93c:22005)
  • [12] -, Normality and the weak topology on a locally compact Abelian group, Proc. Eighth Summer Topology Conference, Ann. New York Acad. Sci. (to appear). MR 1467783 (98m:22004)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22B05, 54A10, 54A25, 54H11

Retrieve articles in all journals with MSC: 22B05, 54A10, 54A25, 54H11


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1209100-7
Keywords: Normal space, independent set, Bohr compactification, totally bounded topology
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society