Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On bivariate Gaussian cubature formulae


Authors: H. J. Schmid and Yuan Xu
Journal: Proc. Amer. Math. Soc. 122 (1994), 833-841
MSC: Primary 65D32; Secondary 41A05
DOI: https://doi.org/10.1090/S0002-9939-1994-1209428-0
MathSciNet review: 1209428
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that for two classes of integrals the results of Gaussian quadrature can be extended straightforwardly to the bivariate case. For these classes Gaussian formulae of an arbitrary degree are derived.


References [Enhancements On Off] (What's this?)

  • [1 H] Berens and H. J. Schmid, On the number of nodes of odd degree cubature formulae for integrals with Jacobi weights on a simplex, Numerical Integration (T. O. Espelid and A. Genz, eds.), Kluwer, Dordrecht, 1992, pp. 37-44. MR 1198896 (93h:65036)
  • [2] H. Berens, H. J. Schmid, and Y. Xu, On twodimensional definite orthogonal systems and on a lower bound for the number of nodes of associated cubature formulae, SIAM J. Math. Anal. (to appear). MR 1320231 (96b:41033)
  • [3] T. S. Chihara, An introduction to orthogonal polynomials, Math. Appl., vol. 13, Gordon and Breach, New York, 1978. MR 0481884 (58:1979)
  • [4] P. J. Davis and P. Rabinowitz, Methods of numerical integration, Academic Press, New York, 1975. MR 0448814 (56:7119)
  • [5] M. A. Kowalski, The recursion formulas for orthogonal polynomials in n variables, SIAM J. Math. Anal. 13 (1982), 309-315. MR 647128 (83j:42022a)
  • [6] -, Orthogonality and recursion formulas for polynomials in n variables, SIAM J. Math. Anal. 13 (1982), 316-323. MR 647129 (83j:42022b)
  • [7] T. Koornwinder, Two-variable analogues of the classical orthogonal polynomials, Theory and Applications of Special Functions (R. A. Askey, ed.), Academic Press, New York, 1975. MR 0402146 (53:5967)
  • [8] -, Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. I, II, Proc. Kon. Nederl. Akad. Wetensch. 36 (1974), 48-66. MR 0340673 (49:5425a)
  • [9] T. Koornwinder and I. Sprinkhuizen-Kuyper, Generalized power series expansions for a class of orthogonal polynomials in two variables, SIAM J. Math. Anal. 9 (1978), 457-483. MR 0493139 (58:12170)
  • [10] V. A. Kuz'menkov, The existence of cubature formulas with the least possible number of node, Zh. Vychisl. Mat. i Mat. Fiz. 16 (1976), 1337-1339. MR 0501793 (58:19051)
  • [11] H. M. Möller, Polynomideale und Kubaturformeln, Ph.D. Thesis, Univ. of Dortmund, 1973.
  • [12] -, Kubaturformeln mit minimaler Knotenzahl, Numer. Math. 25 (1976), 185-200. MR 0405815 (53:9607)
  • [13] I. P. Mysovskikh and V. Ja. Černicina, Answer to a question of Radon, Dokl. Akad. Nauk SSSR 198 (1971), 537-539. MR 0281347 (43:7065)
  • [14] I. P. Mysovskikh, On the construction of cubature formulas with fewest nodes, Soviet Math. 9 (1968), 277-280.
  • [15] -, Numerical characteristics of orthogonal polynomials in two variables, Vestnik Leningrad Univ. Math. 3 (1976), 323-332.
  • [16] -, The approximation of multiple integrals by using interpolator cubature formulae, Quantitative Approximation (R. A. DeVore and K. Scherer, eds.), Academic Press, New York, 1980, pp. 217-243. MR 588184 (82b:41031)
  • [17] H. J. Schmid, On cubature formulae with a minimal number of knots, Numer. Math. 31 (1978), 282-297. MR 514598 (80a:65058)
  • [18] -, Interpolatorische Kubaturformeln, Dissertationes Math. (Rozprawy Mat.) 220 (1983), 1-122. MR 735919 (85i:65034)
  • [19] -, Minimal cubature formulae and matrix equation, submitted, 1992.
  • [20] I. Sprinkhuizen-Kuyper, Orthogonal polynomials in two variables. A further analysis of the polynomials orthogonal over a region bounded by two lines and a parabola, SIAM J. Math. Anal. 7 (1976), 501-518. MR 0415187 (54:3278)
  • [21] Y. Xu, On multivariate orthogonal polynomials, SIAM J. Math. Anal. 24 (1993), 783-794. MR 1215438 (94i:42031)
  • [22] -, Multivariate orthogonal polynomials and operator theory, Trans. Amer. Math. Soc. 343 (1994), 193-202. MR 1169912 (94g:42040)
  • [23] -, Gaussian cubature and bivariate polynomial interpolation, Math. Comp. 59 (1992), 547-555. MR 1140649 (93a:65026)
  • [24] -, Block Jacobi matrices and zeros of multivariate orthogonal polynomials, Trans. Amer. Math. Soc. 342 (1994), 855-866. MR 1258289 (95g:42041)
  • [25] -, Recurrence formulas for multivariate orthogonal polynomials, Math. Comp. (in print).
  • [26] -, On zeros of multivariate quasi-orthogonal polynomials and Gaussian cubature formulae, SIAM J. Math. Anal. 25 (1994). MR 1271322 (95a:65048)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 65D32, 41A05

Retrieve articles in all journals with MSC: 65D32, 41A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1209428-0
Keywords: Gaussian cubature, bivariate orthogonal polynomial, common zeros of orthogonal polynomials
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society