Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Countable paracompactness of $ \Sigma$-products


Author: Le Cheng Yang
Journal: Proc. Amer. Math. Soc. 122 (1994), 949-956
MSC: Primary 54B10; Secondary 54D10, 54D20
DOI: https://doi.org/10.1090/S0002-9939-1994-1216827-X
MathSciNet review: 1216827
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is known that $ \Sigma $-products of compact spaces always are countably paracompact but not necessarily normal. In the present paper it is proved that a $ \Sigma $-product of paracompact $ \sigma $-spaces is normal if and only if it is countably paracompact.


References [Enhancements On Off] (What's this?)

  • [1] A. Bešlagić, Normality in products, Topology Appl. 22 (1986), 71-88. MR 831182 (87k:54016)
  • [2] H. H. Corson, Normality in subsets of product spaces, Amer. J. Math. 81 (1959), 785-796. MR 0107222 (21:5947)
  • [3] G. D. Creede, Concerning semi-stratifiable spaces, Pacific J. Math. 32 (1970), 47-54. MR 0254799 (40:8006)
  • [4] S. P. Gul'ko, On the properties of $ \Sigma $-products, Soviet Math. Dokl. 18 (1977), 1438-1442.
  • [5] T. Hoshina, Products of normal spaces with Lasnev spaces, Fund. Math. 124 (1984), 143-153. MR 774506 (86d:54030)
  • [6] -, Shrinking and normal products, Questions Answers Gen. Topology 2 (1984), 83-91. MR 776570 (86c:54021)
  • [7] -, Normality of product spaces. II, Topics in General Topology (K. Morita and J. Nagata, eds.), North-Holland, Amsterdam, 1989. MR 1053195 (91f:54012)
  • [8] A. P. Kombarov, On tightness and normality of $ \Sigma $-products, Soviet Math. Dokl. 19 (1978), 403-407.
  • [9] K. Morita, Note on products of normal spaces with metric spaces, unpublished.
  • [10] K. Nagami, $ \sigma $-spaces and product spaces, Math. Ann. 181 (1969), 109-118. MR 0244944 (39:6257)
  • [11] -, Countable paracompactness of inverse limits and products, Fund. Math. 73 (1972), 261-270. MR 0301688 (46:844)
  • [12] -, $ \Sigma $-spaces, Fund. Math. 65 (1969), 169-192.
  • [13] J. Nagata, Modern general topology, North-Holland, Amsterdam, 1985. MR 831659 (87g:54003)
  • [14] T. C. Przymusinski, Products of normal spaces, Handbook of Set Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, Amsterdam, 1984. MR 776637 (86c:54007)
  • [15] M. E. Rudin, Book Review, Bull. Amer. Math. Soc. 84 (1978), 271-272. MR 1567046
  • [16] -, The shrinking property, Canad. Math. Bull. 26 (1983), 385-388. MR 716576 (85h:54040)
  • [17] M. E. Rudin and M. Starbird, Products with a metric factor, Gen. Topology Appl. 5 (1975), 235-248. MR 0380709 (52:1606)
  • [18] Y. Yajima, On $ \Sigma $-products of $ \Sigma $-spaces, Fund. Math. 123 (1984), 29-37. MR 755616 (86d:54035)
  • [19] -, On $ \Sigma $-products of semi-stratifiable spaces, Topology Appl. 25 (1987), 1-11.
  • [20] -, The shrinking property of $ \Sigma $-products, Tsukuba J. Math. 13 (1989), 83-98. MR 1003593 (90h:54027)
  • [21] -, Subnormality of $ X \times \kappa $ and $ \Sigma $-products, Topology Appl. (to appear).
  • [22] P. Zenor, Countable paracompactness in product spaces, Proc. Amer. Math. Soc. 30 (1971), 199-201. MR 0279769 (43:5490)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54B10, 54D10, 54D20

Retrieve articles in all journals with MSC: 54B10, 54D10, 54D20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1216827-X
Keywords: $ \Sigma $-product, $ \sigma $-space, countably paracompact, normal
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society