Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Indecomposable modules over Nagata valuation domains


Authors: D. Arnold and M. Dugas
Journal: Proc. Amer. Math. Soc. 122 (1994), 689-696
MSC: Primary 13F30; Secondary 13C05
DOI: https://doi.org/10.1090/S0002-9939-1994-1239795-3
MathSciNet review: 1239795
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a discrete valuation ring R, let $ {\text{fr}}(R)$ be the supremum of the ranks of indecomposable finite rank torsion-free R-modules. Then $ {\text{fr}}(R) = 1,2,3$, or $ \infty $. A complete list of indecomposables is given if $ {\text{fr}}(R) \leq 3$, in which case R is known to be a Nagata valuation domain.


References [Enhancements On Off] (What's this?)

  • [A1] D. Arnold, A duality for torsion-free modules of finite rank over a discrete valuation ring, Proc. London Math. Soc. (3) 24 (1972), 204-216. MR 0292813 (45:1895)
  • [A2] -, Finite rank torsion free abelian groups and rings, Lecture Notes in Math., vol. 931, Springer-Verlag, New York, 1982. MR 665251 (84d:20002)
  • [F] L. Fuchs, Infinite Abelian groups, Vols. I and II, Academic Press, New York, 1970 and 1973. MR 0255673 (41:333)
  • [L1] L. Lady, Abelian group theory, Lecture Notes in Math., vol. 616, Springer-Verlag, New York, 1977, pp. 168-172. MR 0498527 (58:16634)
  • [L2] -, A seminar on splitting rings for torsion-free modules over Dedekind domains, Abelian Group Theory, Lecture Notes in Math., vol. 1006, Springer-Verlag, New York, 1983, pp. 1-48. MR 722612 (85f:13007)
  • [L3] -, Splitting fields for torsion-free modules over Dedekind domains, J. Algebra 49 (1977), 261-275. MR 0506213 (58:22039)
  • [N] M. Nagata, Local rings, Wiley Interscience, New York, 1962. MR 0155856 (27:5790)
  • [R] P. Ribenboim, On the completion of a valuation ring, Math. Ann. 155 (1964), 392-396. MR 0164960 (29:2251)
  • [V] P. Va'mos, Decomposition problems for modules over valuation domains, J. London Math. Soc. 41 (1990), 10-26. MR 1063538 (91g:13011)
  • [Z] P. Zanardo, Kurosch invariants for torsion-free modules over Nagata valuation domains, J. Pure Appl. Algebra 82 (1992), 195-209. MR 1182938 (93i:13017)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13F30, 13C05

Retrieve articles in all journals with MSC: 13F30, 13C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1239795-3
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society