Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Indecomposable modules over Nagata valuation domains


Authors: D. Arnold and M. Dugas
Journal: Proc. Amer. Math. Soc. 122 (1994), 689-696
MSC: Primary 13F30; Secondary 13C05
MathSciNet review: 1239795
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a discrete valuation ring R, let $ {\text{fr}}(R)$ be the supremum of the ranks of indecomposable finite rank torsion-free R-modules. Then $ {\text{fr}}(R) = 1,2,3$, or $ \infty $. A complete list of indecomposables is given if $ {\text{fr}}(R) \leq 3$, in which case R is known to be a Nagata valuation domain.


References [Enhancements On Off] (What's this?)

  • [A1] David M. Arnold, A duality for torsion-free modules of finite rank over a discrete valuation ring, Proc. London Math. Soc. (3) 24 (1972), 204–216. MR 0292813
  • [A2] David M. Arnold, Finite rank torsion free abelian groups and rings, Lecture Notes in Mathematics, vol. 931, Springer-Verlag, Berlin-New York, 1982. MR 665251
  • [F] László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 0255673
  • [L1] E. L. Lady, On classifying torsion free modules over discrete valuation rings, Abelian group theory (Proc. Second New Mexico State Univ. Conf., Las Cruces, N.M., 1976) Springer, Berlin, 1977, pp. 168–172. Lecture Notes in Math., Vol. 616. MR 0498527
  • [L2] E. L. Lady, A seminar on splitting rings for torsion free modules over Dedekind domains, Abelian group theory (Honolulu, Hawaii, 1983) Lecture Notes in Math., vol. 1006, Springer, Berlin, 1983, pp. 1–48. MR 722612, 10.1007/BFb0103696
  • [L3] E. L. Lady, Splitting fields for torsion-free modules over discrete valuation rings. I, J. Algebra 49 (1977), no. 1, 261–275. MR 0506213
  • [N] Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York-London, 1962. MR 0155856
  • [R] P. Ribenboim, On the completion of a valuation ring, Math. Ann. 155 (1964), 392–396. MR 0164960
  • [V] Peter Vámos, Decomposition problems for modules over valuation domains, J. London Math. Soc. (2) 41 (1990), no. 1, 10–26. MR 1063538, 10.1112/jlms/s2-41.1.10
  • [Z] Paolo Zanardo, Kurosch invariants for torsion-free modules over Nagata valuation domains, J. Pure Appl. Algebra 82 (1992), no. 2, 195–209. MR 1182938, 10.1016/0022-4049(92)90120-5

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13F30, 13C05

Retrieve articles in all journals with MSC: 13F30, 13C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1239795-3
Article copyright: © Copyright 1994 American Mathematical Society