Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Sums and products of cyclic operators


Author: Pei Yuan Wu
Journal: Proc. Amer. Math. Soc. 122 (1994), 1053-1063
MSC: Primary 47A05; Secondary 47A68
DOI: https://doi.org/10.1090/S0002-9939-1994-1203995-9
MathSciNet review: 1203995
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that every bounded linear operator on a complex separable Hilbert space is the sum of two cyclic operators. For the product, we show that an operator T is the product of finitely many cyclic operators if and only if the kernel of $ {T^ \ast }$ is finite-dimensional. More precisely, if dim ker $ {T^ \ast } \leq k(2 \leq k < \infty )$, then T is the product of at most $ k + 2$ cyclic operators. We conjecture that in this case at most k cyclic operators would suffice and verify this for some special classes of operators.


References [Enhancements On Off] (What's this?)

  • [1] C. Apostol, L. A. Fialkow, D. A. Herrero, and D. Voiculescu, Approximation of Hilbert space operators. II, Pitman, Boston, MA, 1984.
  • [2] L. G. Brown, Almost every proper isometry is a shift, Indiana Univ. Math. J. 23 (1973), 429-431. MR 0328634 (48:6976)
  • [3] K. R. Davidson and D. A. Herrero, The Jordan form of a bitriangular operator, J. Funct. Anal. 94 (1990), 27-73. MR 1077544 (92a:47022)
  • [4] R. G. Douglas and C. Pearcy, A note on quasitriangular operators, Duke Math. J. 37 (1970), 177-188. MR 0257790 (41:2439)
  • [5] P. A. Fillmore, J. G. Stampfli, and J. P. Williams, On the essential numerical range, the essential spectrum and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1962), 179-192. MR 0322534 (48:896)
  • [6] I. Gohberg, P. Lancaster, and L. Rodman, Invariant subspaces of matrices with applications, Wiley, New York, 1986. MR 873503 (88a:15001)
  • [7] P. R. Halmos, Products of shifts, Duke Math. J. 39 (1972), 779-787. MR 0313860 (47:2413)
  • [8] -, A Hilbert space problem book, 2nd ed., Springer-Verlag, New York, 1982. MR 675952 (84e:47001)
  • [9] D. A. Herrero, D. R. Lason. and W. R. Wogen, Semitriangular operators, Houston J. Math. 17 (1991), 477-499. MR 1147270 (92m:47037)
  • [10] D. A. Herrero and W. R. Wogen, On the multiplicity of $ T \oplus T \oplus \cdots \oplus T$, Rocky Mountain J. Math. 20 (1990), 445-466. MR 1065843 (91f:47027)
  • [11] N. K. Nikolskii, Multiplicity phenomenon. I. An introduction and maxi-formulas, Toeplitz Operators and Spectral Function Theory (N. K. Nikolskii, ed.), OT, vol. 42, Birkhäuser-Verlag, Basel (1989), 9-57. MR 1030049 (91b:47039)
  • [12] H. Radjavi and P. Rosenthal, Invariant subspaces, Springer-Verlag, New York, 1973. MR 0367682 (51:3924)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A05, 47A68

Retrieve articles in all journals with MSC: 47A05, 47A68


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1203995-9
Keywords: Cyclic operator, multicyclic operator, triangular operator
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society