Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Support theorems for Radon transforms on higher rank symmetric spaces


Authors: Fulton Gonzalez and Eric Todd Quinto
Journal: Proc. Amer. Math. Soc. 122 (1994), 1045-1052
MSC: Primary 44A12; Secondary 43A85, 58G15
DOI: https://doi.org/10.1090/S0002-9939-1994-1205492-3
MathSciNet review: 1205492
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove support theorems for Radon transforms with real-analytic measures on horocycles in higher rank symmetric spaces. The microlocal analysis is more difficult than for rank one, but we prove a generalization of Helgason's support theorem and a theorem that is new even in the classical case.


References [Enhancements On Off] (What's this?)

  • [1] J. Boman and E. T Quinto, Support theorems for real analytic Radon transforms on line complexes in $ {\mathbb{R}^3}$, Trans. Amer. Math. Soc. 335 (1993), 877-890. MR 1080733 (93d:58160)
  • [2] J. Globevnik, A support theorem for the X-ray transform, J. Math. Anal. Appl. 165 (1992), 284-287. MR 1151072 (93g:44004)
  • [3] A. Greenleaf and G. Uhlmann, Non-local inversion formulas in integral geometry, Duke J. Math. 58 (1989), 205-240. MR 1016420 (91b:58251)
  • [4] V. Guillemin, Some remarks on integral geometry, unpublished, 1975.
  • [5] -, On some results of Gelfand in integral geometry, Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 149-155. MR 812288 (87d:58137)
  • [6] V. Guillemin and S. Sternberg, Geometric asymptotics, Amer. Math. Soc., Providence, RI, 1977. MR 0516965 (58:24404)
  • [7] S. Helgason, Duality and Radon transform for symmetric spaces, Amer J. Math. 85 (1963), 667-692. MR 0158409 (28:1632)
  • [8] -, An analog of the Paley-Wiener theorem for the Fourier transform on certain symmetric spaces, Math. Ann. 165 (1966), 297-308. MR 0223497 (36:6545)
  • [9] -, A duality for symmetric spaces, with applications to group representations, Adv. Math. 5 (1970), 153-180. MR 0263988 (41:8587)
  • [10] -, The surjectivity of invariant differential operators on symmetric spaces. I, Ann. of Math. (2) 98 (1973), 451-479. MR 0367562 (51:3804)
  • [11] -, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978. MR 514561 (80k:53081)
  • [12] -, Groups and geometric analysis, Academic Press, New York, 1984. MR 754767 (86c:22017)
  • [13] L. Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), 79-183.
  • [14] -, The analysis of linear partial differential operators. I, Springer, New York, 1983.
  • [15] A. Kaneko, Introduction to hyperfunctions, Kluwer, New York, 1989. MR 1026013 (90m:32017)
  • [16] E. T. Quinto, The dependence of the generalized Radon transform on defining measures, Trans. Amer. Math. Soc. 257 (1980), 331-346. MR 552261 (81a:58048)
  • [17] -, Real-analytic Radon transforms on rank one symmetric spaces, Proc. Amer. Math. Soc. 117 (1993), 179-186. MR 1135080 (93e:44005)
  • [18] M. Sato, T. Kawai, and M. Kashiwara, Hyperfunctions and pseudodifferential equations, Lecture Notes in Math., vol. 287, Springer-Verlag, New York, 1973, pp. 265-529. MR 0420735 (54:8747)
  • [19] C. D. Sogge and E. M. Stein, Averages over hypersurfaces smoothness of generalized Radon transforms, J. Analyse Math. 54 (1990), 165-188. MR 1041180 (91i:58145)
  • [20] F. Treves, Introduction to pseudodifferential and Fourier integral operators. I, Plenum Press, New York, 1980. MR 597145 (82i:58068)
  • [21] P. D. Lax and R. S. Phillips, A local Paley-Wiener Theorem for the Radon transform of $ {L^2}$ functions in a non-euclidean setting, Comm. Pure Appl. Math. 35 (1982), 531-554. MR 657826 (83i:43016)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 44A12, 43A85, 58G15

Retrieve articles in all journals with MSC: 44A12, 43A85, 58G15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1205492-3
Keywords: Radon transform on horocycles, symmetric space, support theorems, microlocal analysis
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society