Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on discriminantal arrangements


Author: Michael Falk
Journal: Proc. Amer. Math. Soc. 122 (1994), 1221-1227
MSC: Primary 52B30; Secondary 52B40
DOI: https://doi.org/10.1090/S0002-9939-1994-1209098-1
MathSciNet review: 1209098
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\mathcal{A}_0}$ be a fixed affine arrangement of n hyperplanes in general position in $ {{\mathbf{K}}^k}$. Let $ U(n,k)$ denote the set of general position arrangements whose elements are parallel translates of the hyperplanes of $ {\mathcal{A}_0}$. Then $ U(n,k)$ is the complement of a central arrangement $ \mathcal{B}(n,k)$. These are the well-known discriminantal arrangements introduced by Y. I. Manin and V. V. Schechtman. In this note we give an explicit description of $ \mathcal{B}(n,k)$ in terms of the original arrangement $ {\mathcal{A}_0}$. In terms of the underlying matroids, $ \mathcal{B}(n,k)$ realizes an adjoint of the dual of the matroid associated with $ {\mathcal{A}_0}$. Using this description we show that, contrary to the conventional wisdom, neither the intersection lattice of $ \mathcal{B}(n,k)$ nor the topology of $ U(n,k)$ is independent of the original arrangement $ {\mathcal{A}_0}$.


References [Enhancements On Off] (What's this?)

  • [1] A. Bachem and W. Kern, Adjoints of oriented matroids, Combinatorica 6 (1986), 299-308. MR 879333 (88h:05031)
  • [2] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. Ziegler, Oriented matroids, Cambridge Univ. Press, Cambridge, 1992.
  • [3] I. M. Gelfand, R. M. Goresky, R. D. MacPherson, and V. V. Serganova, Combinatorial geometries, convex polyhedra, and Schubert cells, Adv. Math. 63 (1987), 301-316. MR 877789 (88f:14045)
  • [4] R. Hain and R. MacPherson, Higher logarithms, Illinois Math. J. 34 (1990), 392-475. MR 1046570 (92c:14016)
  • [5] R. Lawrence, A presentation for Manin and Schechtman's higher braid groups, MSRI preprint series #04129-91, April, 1991.
  • [6] Y. I. Manin and V. V. Schechtman, Arrangements of hyperplanes, higher braid groups and higher Bruhat orders, Algebraic Number Theory - in honor of K. Iwasawa (Amsterdam), Adv. Stud. in Pure Mathematics, vol. 17, North-Holland, Amsterdam, 1989, pp. 289-308. MR 1097620 (91m:32042)
  • [7] P. Orlik, Introduction to arrangements, CBMS Regional Conf. Ser. in Math., vol. 72, Amer. Math. Soc., Providence, RI, 1989. MR 1006880 (90i:32018)
  • [8] P. Orlik and H. Terao, Arrangements of hyperplanes, Springer-Verlag, Berlin, Heidelberg, and New York, 1992. MR 1217488 (94e:52014)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 52B30, 52B40

Retrieve articles in all journals with MSC: 52B30, 52B40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1209098-1
Keywords: Manin-Schechtman arrangement, Grassmann stratum, dual matroid, adjoint
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society