Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A converse of the volume-mean-value property for invariantly harmonic functions


Authors: Joaquim Bruna and Jacqueline Detraz
Journal: Proc. Amer. Math. Soc. 122 (1994), 1029-1034
MSC: Primary 31B05; Secondary 32A99
DOI: https://doi.org/10.1090/S0002-9939-1994-1209418-8
MathSciNet review: 1209418
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the balls are the only domains having the mean value property with respect to the invariantly harmonic functions in the unit ball of $ {\mathbb{C}^n}$.


References [Enhancements On Off] (What's this?)

  • [1] P. Ahern, M. Flores, and W. Rudin, An invariant volume-mean-value-property, J. Funct. Anal. 111 (1993), 380-397. MR 1203459 (94b:31002)
  • [2] D. H. Armitage and M. Goldstein, The volume mean-value property of harmonic functions, Complex Variables 13 (1990), 185-193. MR 1039156 (91a:31004)
  • [3] J. Bruna, A uniqueness theorem for invariantly harmonic functions in the unit ball of $ {\mathbb{C}^n}$, Publ. Mat. 36 (1992), 421-426. MR 1209812 (94d:32026)
  • [4] B. Epstein, On the mean value property of harmonic functions, Proc. Amer. Math. Soc. 13 (1962), 830. MR 0140700 (25:4114)
  • [5] Ũ. Kuran, On the mean-value property of harmonic functions, Bull. London Math. Soc. 4 (1972), 311-312. MR 0320348 (47:8887)
  • [6] B. Malgrange, Existence et approximation des solutions des equations aux derivees partielles et des equations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1956), 271-355. MR 0086990 (19:280a)
  • [7] W. Rudin, Function theory in the unit ball of $ {\mathbb{C}^n}$, Grundlehren Math. Wiss., vol. 241, Springer-Verlag, New York, 1980. MR 601594 (82i:32002)
  • [8] H. Shapiro, private communciation, 1993.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 31B05, 32A99

Retrieve articles in all journals with MSC: 31B05, 32A99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1209418-8
Keywords: Invariantly harmonic functions, Green function, Bergman Laplacian
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society