Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Surfaces of constant mean curvature $1$ in $\textbf {H}^ 3$ and algebraic curves on a quadric
HTML articles powered by AMS MathViewer

by A. J. Small PDF
Proc. Amer. Math. Soc. 122 (1994), 1211-1220 Request permission

Abstract:

We show that there exists a natural correspondence between holomorphic curves in $\mathbb {P}{\text {SL}}(2,\mathbb {C})$ that are null with respect to the Cartan-Killing metric, and holomorphic curves on ${\mathbb {P}_1} \times {\mathbb {P}_1}$. This correspondence derives from classical osculation duality between curves in ${\mathbb {P}_3}$ and its dual, $\mathbb {P}_3^ \ast$. Thus, via Bryant’s correspondence, surfaces of constant mean curvature 1 in the 3-dimensional hyperbolic space of curvature $- 1$, are studied in terms of complex geometry: in particular, ’Weierstrass representation formulae’ for such surfaces are derived.
References
  • M. F. Atiyah, Magnetic monopoles in hyperbolic spaces, Vector bundles on algebraic varieties (Bombay, 1984) Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 1–33. MR 893593
  • M. F. Atiyah and R. S. Ward, Instantons and algebraic geometry, Comm. Math. Phys. 55 (1977), no. 2, 117–124. MR 494098, DOI 10.1007/BF01626514
  • A. I. Bobenko, All constant mean curvature tori in $\textbf {R}^3,\;S^3,\;H^3$ in terms of theta-functions, Math. Ann. 290 (1991), no. 2, 209–245. MR 1109632, DOI 10.1007/BF01459243
  • Robert L. Bryant, Surfaces of mean curvature one in hyperbolic space, Astérisque 154-155 (1987), 12, 321–347, 353 (1988) (English, with French summary). Théorie des variétés minimales et applications (Palaiseau, 1983–1984). MR 955072
  • Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
  • Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
  • N. J. Hitchin, Complex manifolds and Einstein’s equations, Twistor Geometry and Non-Linear Systems, Lecture Notes in Math., vol. 970, Springer-Verlag, New York, 1980.
  • N. J. Hitchin, Monopoles and geodesics, Comm. Math. Phys. 83 (1982), no. 4, 579–602. MR 649818, DOI 10.1007/BF01208717
  • G. Kerbaugh, Surfaces of constant mean curvature 1 in hyperbolic space, Thesis, S.U.N.Y Stony Brook, 1985.
  • Nicholas J. Korevaar, Rob Kusner, William H. Meeks III, and Bruce Solomon, Constant mean curvature surfaces in hyperbolic space, Amer. J. Math. 114 (1992), no. 1, 1–43. MR 1147718, DOI 10.2307/2374738
  • William T. Shaw, Twistors, minimal surfaces and strings, Classical Quantum Gravity 2 (1985), no. 6, L113–L119. MR 815170
  • A. J. Small, Minimal surfaces in $\mathbf R^3$ and algebraic curves, Differential Geom. Appl. 2 (1992), no. 4, 369–384. MR 1243536, DOI 10.1016/0926-2245(92)90003-6
  • —, Minimal surfaces in ${\mathbb {R}^4}$ and the Klein correspondence (in preparation). —, Null curves in self-dual Einstein manifolds and Einstein-Weyl spaces (in preparation). —, Monopole charge, null curves and jumping lines (in preparation).
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53A10, 14H10, 81R25
  • Retrieve articles in all journals with MSC: 53A10, 14H10, 81R25
Additional Information
  • © Copyright 1994 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 122 (1994), 1211-1220
  • MSC: Primary 53A10; Secondary 14H10, 81R25
  • DOI: https://doi.org/10.1090/S0002-9939-1994-1209429-2
  • MathSciNet review: 1209429