Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Surfaces of constant mean curvature $ 1$ in $ {\bf H}\sp 3$ and algebraic curves on a quadric


Author: A. J. Small
Journal: Proc. Amer. Math. Soc. 122 (1994), 1211-1220
MSC: Primary 53A10; Secondary 14H10, 81R25
MathSciNet review: 1209429
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that there exists a natural correspondence between holomorphic curves in $ \mathbb{P}{\text{SL}}(2,\mathbb{C})$ that are null with respect to the Cartan-Killing metric, and holomorphic curves on $ {\mathbb{P}_1} \times {\mathbb{P}_1}$. This correspondence derives from classical osculation duality between curves in $ {\mathbb{P}_3}$ and its dual, $ \mathbb{P}_3^ \ast $. Thus, via Bryant's correspondence, surfaces of constant mean curvature 1 in the 3-dimensional hyperbolic space of curvature $ - 1$, are studied in terms of complex geometry: in particular, 'Weierstrass representation formulae' for such surfaces are derived.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, Magnetic monopoles in hyperbolic spaces, Vector bundles on algebraic varieties (Bombay, 1984) Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 1–33. MR 893593
  • [2] M. F. Atiyah and R. S. Ward, Instantons and algebraic geometry, Comm. Math. Phys. 55 (1977), no. 2, 117–124. MR 0494098
  • [3] A. I. Bobenko, All constant mean curvature tori in 𝑅³,𝑆³,𝐻³ in terms of theta-functions, Math. Ann. 290 (1991), no. 2, 209–245. MR 1109632, 10.1007/BF01459243
  • [4] Robert L. Bryant, Surfaces of mean curvature one in hyperbolic space, Astérisque 154-155 (1987), 12, 321–347, 353 (1988) (English, with French summary). Théorie des variétés minimales et applications (Palaiseau, 1983–1984). MR 955072
  • [5] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
  • [6] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
  • [7] N. J. Hitchin, Complex manifolds and Einstein's equations, Twistor Geometry and Non-Linear Systems, Lecture Notes in Math., vol. 970, Springer-Verlag, New York, 1980.
  • [8] N. J. Hitchin, Monopoles and geodesics, Comm. Math. Phys. 83 (1982), no. 4, 579–602. MR 649818
  • [9] G. Kerbaugh, Surfaces of constant mean curvature 1 in hyperbolic space, Thesis, S.U.N.Y Stony Brook, 1985.
  • [10] Nicholas J. Korevaar, Rob Kusner, William H. Meeks III, and Bruce Solomon, Constant mean curvature surfaces in hyperbolic space, Amer. J. Math. 114 (1992), no. 1, 1–43. MR 1147718, 10.2307/2374738
  • [11] William T. Shaw, Twistors, minimal surfaces and strings, Classical Quantum Gravity 2 (1985), no. 6, L113–L119. MR 815170
  • [12] A. J. Small, Minimal surfaces in 𝐑³ and algebraic curves, Differential Geom. Appl. 2 (1992), no. 4, 369–384. MR 1243536, 10.1016/0926-2245(92)90003-6
  • [13] -, Minimal surfaces in $ {\mathbb{R}^4}$ and the Klein correspondence (in preparation).
  • [14] -, Null curves in self-dual Einstein manifolds and Einstein-Weyl spaces (in preparation).
  • [15] -, Monopole charge, null curves and jumping lines (in preparation).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53A10, 14H10, 81R25

Retrieve articles in all journals with MSC: 53A10, 14H10, 81R25


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1994-1209429-2
Article copyright: © Copyright 1994 American Mathematical Society