Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Surfaces of constant mean curvature $ 1$ in $ {\bf H}\sp 3$ and algebraic curves on a quadric


Author: A. J. Small
Journal: Proc. Amer. Math. Soc. 122 (1994), 1211-1220
MSC: Primary 53A10; Secondary 14H10, 81R25
DOI: https://doi.org/10.1090/S0002-9939-1994-1209429-2
MathSciNet review: 1209429
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that there exists a natural correspondence between holomorphic curves in $ \mathbb{P}{\text{SL}}(2,\mathbb{C})$ that are null with respect to the Cartan-Killing metric, and holomorphic curves on $ {\mathbb{P}_1} \times {\mathbb{P}_1}$. This correspondence derives from classical osculation duality between curves in $ {\mathbb{P}_3}$ and its dual, $ \mathbb{P}_3^ \ast $. Thus, via Bryant's correspondence, surfaces of constant mean curvature 1 in the 3-dimensional hyperbolic space of curvature $ - 1$, are studied in terms of complex geometry: in particular, 'Weierstrass representation formulae' for such surfaces are derived.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, Magnetic monopoles on hyperbolic space, Vector Bundles on Algebraic Varieties, Oxford Univ. Press, London, 1987, pp. 95-148. MR 893593 (88i:32045)
  • [2] M. F. Atiyah and R. S. Ward, Instantons and algebraic geometry, Comm. Math. Phys. 55 (1977), 117-124. MR 0494098 (58:13029)
  • [3] A. I. Bobenko, All constant mean curvature tori in $ {\mathbb{R}^3},{S^3},{\mathbb{H}^3}$ in terms of theta functions, Math. Ann. 290 (1991), 209-245. MR 1109632 (92h:53072)
  • [4] R. L. Bryant, Surfaces of mean curvature one in hyperbolic space, Théorie des Variétés Minimal et Applications, Asterisque 154-155 (1987), 321-347. MR 955072
  • [5] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience, New York, 1978. MR 507725 (80b:14001)
  • [6] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. MR 0463157 (57:3116)
  • [7] N. J. Hitchin, Complex manifolds and Einstein's equations, Twistor Geometry and Non-Linear Systems, Lecture Notes in Math., vol. 970, Springer-Verlag, New York, 1980.
  • [8] -, Monopoles and geodesies, Comm. Math. Phys. 83 (1982), 579-602. MR 649818 (84i:53071)
  • [9] G. Kerbaugh, Surfaces of constant mean curvature 1 in hyperbolic space, Thesis, S.U.N.Y Stony Brook, 1985.
  • [10] N. J. Korevaar, R. Kusner, W. H. Meeks III, and B. Solomon, Constant mean curvature surfaces in hyperbolic space, Amer. J. Math. 114 (1992), 1-43. MR 1147718 (92k:53116)
  • [11] W. T. Shaw, Twistors, minimal surfaces and strings, Classical Quantum Gravity 2 (1985), L113-L119. MR 815170 (87e:32046)
  • [12] A. J. Small, Minimal surfaces in $ {\mathbb{R}^3}$ and algebraic curves, Differential Geom. Appl. 2 (1992), 369-384. MR 1243536 (94h:53014)
  • [13] -, Minimal surfaces in $ {\mathbb{R}^4}$ and the Klein correspondence (in preparation).
  • [14] -, Null curves in self-dual Einstein manifolds and Einstein-Weyl spaces (in preparation).
  • [15] -, Monopole charge, null curves and jumping lines (in preparation).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53A10, 14H10, 81R25

Retrieve articles in all journals with MSC: 53A10, 14H10, 81R25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1209429-2
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society