IDEALS OF OPERATORS STRICTLY SINGULAR ON SUBSPACES

MICHAEL J. MEYER

(Communicated by Palle E. T. Jorgensen)

Abstract. For each set \(\Omega \) of cardinality at most \(2^{\omega} \), we give an easy construction of Banach spaces \(X \), such that the algebra \(\mathcal{B}(X) \) of all bounded linear operators on \(X \) contains a lattice of closed ideals, which is order isomorphic with respect to inclusion to the full power set of \(\Omega \).

Introduction and result

Let \(X \) be a Banach space and \(\mathcal{B}(X) \) the Banach algebra of bounded linear operators on \(X \). The ideal structure of \(B(X) \) depends very much on the Banach space \(X \). For example, if \(X = c_0 \) or \(X = l_p \), \(1 \leq p < \infty \), then \(B(X) \) contains only one nontrivial closed two-sided ideal, the ideal of compact operators.

On the other hand Porta constructed in [1] a Banach space \(X \) and, for each nonempty finite subset \(A \subseteq \mathbb{N} \), a closed two-sided ideal \(H(A) \subseteq \mathcal{B}(X) \) such that the map \(H : A \to H(A) \) is an order isomorphism with respect to set inclusion of the family of finite subsets \(A \subseteq \mathbb{N} \) with the family of closed ideals \(H(A) \subseteq \mathcal{B}(X) \).

In this note we give an extremely easy construction of a lattice of closed operator ideals on a suitable Banach space \(X \), which is order isomorphic to the full power set of certain infinite sets \(\Omega \).

Let us call two Banach spaces \(E, F \) incomparable, if each bounded linear operator \(T : E \to F \) is strictly singular [2, 2.c.1 and 2.c.2]. With this we can show:

Theorem 1. Suppose that the Banach space \(X \) contains a family \((E_a)_{a \in \Omega} \) of pairwise incomparable complemented infinite-dimensional subspaces \(E_a \subseteq X \). Then for each subset \(A \subseteq \Omega \) a closed two-sided ideal \(I(A) \subseteq \mathcal{B}(X) \) can be defined such that the map \(I : A \to I(A) \) is an order isomorphism with respect to inclusion of the power set of \(\Omega \) with a family of closed ideals \(I(A) \subseteq \mathcal{B}(X) \).

Proof. For each closed subspace \(E \subseteq X \) let \(S(E) \) denote the family of all operators \(t \in B(X) \) such that the restriction \(t|_{E_1} : E_1 \to X \) is strictly singular for each closed subspace \(E_1 \subseteq X \), which is isomorphic to \(E \).

It is easily checked that \(S(E) \) is a closed left ideal in \(B(X) \). We claim that it is in fact a two-sided ideal. Since every element \(a \) in the unital Banach algebra...
$B(X)$ can be written as the sum of two invertibles \(a = \lambda 1 + (a - \lambda 1) \), where \(|\lambda|\) exceeds the spectral radius of \(a \), it will suffice to show that \(S(E)g \subseteq S(E) \) for all invertibles \(g \in \mathcal{B}(X) \).

Let now \(t \in S(E) \) and \(g \in \text{inv}(B(X)) \). If \(E_1 \subseteq X \) is any closed subspace isomorphic to \(E \), then so is the subspace \(g(E_1) \). Consequently the restriction \(t|_{g(E_1)} \) is strictly singular. But then the restriction \(t^g|_{E_1} \) is strictly singular. This shows that \(tg \in S(E) \).

For each index \(\alpha \in \Omega \) choose a projection \(p_\alpha \in \mathcal{B}(X) \) with \(p_\alpha(X) = E_\alpha \) and define

\[
I(A) = \bigcap_{\alpha \in \Omega \setminus A} S(E_\alpha), \quad \text{for each subset } A \subseteq \Omega,
\]

where \(I(A) = \mathcal{B}(X) \), if \(A = \Omega \). \(I(A) \) is an intersection of closed two-sided ideals in \(B(X) \) and hence itself such an ideal. Clearly \(A \subseteq B \subseteq \Omega \) implies \(I(A) \subseteq I(B) \). We claim now that

\[
(1) \quad p_\alpha \in I(A) \iff \alpha \in A, \quad \text{for all subsets } A \subseteq \Omega \text{ and } \alpha \in \Omega.
\]

Note first that \(p_\alpha \notin S(E_\alpha) \), since the restriction of \(p_\alpha \) to the subspace \(E_\alpha \) is not strictly singular. Thus \(p_\alpha \notin I(A) \), if \(\alpha \in \Omega \setminus A \). In other words, \(p_\alpha \in I(A) \Rightarrow \alpha \in A \).

Conversely assume that \(\alpha \in A \). We claim that \(p_\alpha \in I(A) \) and must show that \(p_\alpha \in S(E_\beta) \) for all \(\beta \in \Omega \setminus A \). Indeed, we show that \(p_\alpha \in S(E_\beta) \) for all \(\beta \neq \alpha \).

Suppose that \(\beta \in \Omega, \beta \neq \alpha \), and \(F \) is any closed subspace of \(X \) which is isomorphic to \(E_\beta \). The projection \(p_\alpha \) maps \(F \) into \(E_\beta \). Since the spaces \(E_\beta, E_\alpha \) and hence the spaces \(F, E_\alpha \) are incomparable by assumption, the restriction of \(p_\alpha \) to \(F \) must be strictly singular. This shows that \(p_\alpha \in E_\beta \) and proves (1). According to (1)

\[
A = \{ \alpha \in \Omega : p_\alpha \in I(A) \} \quad \text{for each subset } A \subseteq \Omega.
\]

Thus \(I(A) \subseteq I(B) \) implies \(A \subseteq B \) for all subsets \(A, B \subseteq \Omega \). This concludes the proof. \(\Box \)

Remarks. The Banach spaces \(E_p = l_p, \ 1 \leq p < \infty \), are well known to be pairwise incomparable [2, 2.c.1 and 2.c.2]. Suppose now that \(\Omega \) is a set of cardinality at most \(2^\omega \). We may assume that \(\Omega \) is a subset of the interval [2, 3]. Then the Banach space

\[
X = \left\{ x = (x_p)_{p \in \Omega} : x_p \in l_p, \ \text{for all } p \in \Omega, \ \text{and } \| x \| = \left(\sum_{p \in \Omega} \| x_p \|^2_{l_p} \right)^{1/2} < \infty \right\}
\]

satisfies the assumptions of Theorem 1 for the family of subspaces \((E_p)_{p \in \Omega} \). Theorem 1 now gives a large family of closed ideals in the Banach algebra \(\mathcal{B}(X) \). It is now interesting to note that

Proposition 1. Let \(X \) be a Banach space, and suppose that \(I, J \subseteq \mathcal{B}(X) \) are distinct ideals which are Banach algebras in some norms. Then \(I \) and \(J \) are not isomorphic as complex algebras.
Proof. According to [3, Theorem 2.5.19] any algebra isomorphism $\phi : I \to J$ is the restriction to I of an inner automorphism of $\mathcal{B}(X)$. Consequently ϕ leaves I invariant. □

ACKNOWLEDGMENTS

The author expresses his gratitude to his former advisor Theodore Palmer for valuable discussions.

REFERENCES

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, GEORGIA STATE UNIVERSITY, ATLANTA, GEORGIA 30303