THE EXISTENCE OF BOUNDED INFINITE DTr-ORBITS

SHIPING LIU AND RAINER SCHULZ

(Communicated by Ken Goodearl)

Abstract. We construct an indecomposable module over a symmetric algebra whose DTr-orbit is infinite and bounded. This yields a counterexample to a conjecture which states that the number of modules in an Auslander-Reiten component having the same length is finite.

Let Λ be an Artin algebra, C a connected component of the Auslander-Reiten quiver of Λ, and DTr the Auslander-Reiten translation [1]. In [8], Ringel asked whether the number of modules having the same length in C is always finite. This is the case when Λ is a hereditary algebra [2, 10] or a tame algebra [4]. For an arbitrary algebra Λ, the question has an affirmative answer if C has at most finitely many nonperiodic DTr-orbits [3, 6] or is a regular component of the form $\mathbb{Z}\Delta$ with Δ one of A_∞^∞, B_∞, C_∞, or D_∞ [7].

The aim of this paper is to show that the above problem has no affirmative answer in general. We shall construct a local symmetric algebra whose Auslander-Reiten quiver contains a bounded infinite DTr-orbit. Our example will be a modification of that given by the second author in a different context [9].

Let K be a field which contains an element ρ of infinite multiplicative order. Let R be the polynomial ring over K in noncommuting variables X and Y modulo the ideal generated by X^2, Y^2, and $XY - \rho YX$. Then R is a local Frobenius algebra over K with radical $J(R) = xR + yR$, $J(R)^2 = \text{Soc}(R) = xyR$, and $J(R)^3 = 0$, where x, y denote the residue classes of X, Y, respectively. Let $DR = \text{Hom}_{K}(R, K)$ be the dual of R with the following R-R-bimodule structure: given $r', r'' \in R$ and $f \in DR$, $(r', f')(r'', f'') = (rr', rf' + fr'')$ for $r, r' \in R$ and $f, f' \in DR$. Then T is the trivial extension algebra of R by DR which is the K-vector space $T = R \oplus DR$ with multiplication given by

$$(r, f)(r', f') = (rr', rf' + fr')$$

for $r, r' \in R$ and $f, f' \in DR$. Then T is a local symmetric K-algebra with radical

$$J(T) = \{(r, f) | r \in J(R), f \in DR\}$$

Received by the editors March 25, 1993.
1991 Mathematics Subject Classification. Primary 16G10, 16G70.
Key words and phrases. Artin algebra, Auslander-Reiten quiver, DTr-orbit.
and \(J(T)^4 = 0 \). We choose a \(K \)-basis \(1, x, y, xy, a, b, c, d \) of \(T \), where \(a, b, c, d \) is the \(K \)-basis of \(DR \) dual to the \(K \)-basis \(1, x, y, xy \) of \(R \). We find the following multiplication table of \(T \):

\[
\begin{array}{cccccccc}
1 & x & y & xy & a & b & c & d \\
1 & 1 & x & y & xy & a & b & c & d \\
x & x & 0 & xy & 0 & 0 & a & 0 & \rho c \\
y & y & \rho xy & 0 & 0 & 0 & 0 & a & b \\
xy & xy & 0 & 0 & 0 & 0 & 0 & a & 0 \\
a & a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
b & b & a & 0 & 0 & 0 & 0 & 0 & 0 \\
c & c & 0 & a & 0 & 0 & 0 & 0 & 0 \\
d & d & c & \rho b & a & 0 & 0 & 0 & 0 \\
\end{array}
\]

For a right \(T \)-module \(N \), let \(\Omega N \) denote the kernel of a minimal projective cover of \(N \). It is well known that \(\Omega^2 N = DTr N \), since \(T \) is a symmetric algebra. Let now \(M \) be the module \(M = (x + y)T \). We shall compute \(\Omega^i M \) for all \(i \in \mathbb{Z} \). Since \(M \) is the image of the map from \(T \) to \(T \) given by the left multiplication with the element \(x + y \), the module \(\Omega M \) is the right annihilator of \(x + y \) in \(T \). Using the equation

\[
(x + y)(A + Bx + Cy + Dxy + Ea + Fb + Gc + Hd) = 0,
\]

where \(A, B, C, D, E, F, G, H \in K \), one finds \(A = H = 0 \), \(C + B \rho = 0 \), and \(F + G = 0 \). Hence, \(\Omega M = (x + (-\rho) y) T + (-b + c) T \). Note that \((x + (-\rho) y) d = \rho (-b + c) \). This implies that \(\Omega^i M = (x + (-\rho)^i y) T \). By induction, one can show that \(\Omega^i M = (x + (-\rho)^i y) T \) for all \(i \in \mathbb{Z} \). Using the fact that \(T = K + J(T) \) and \(J(T)^4 = 0 \), one has

\[
M(x + (-\rho)^2 y) J(T) = (x + y) T (x + (-\rho)^2 y) J(T) = (x + y) (x + (-\rho)^2 y) J(T) \neq 0
\]

and

\[
\Omega^i M(x + (-\rho)^2 y) J(T) = (x + (-\rho) y) (x + (-\rho)^2 y) J(T) = 0.
\]

Hence, \(M \) and \(\Omega M \) have different annihilators in \(T \). Therefore, they are not isomorphic. Using the fact that \(\rho \) is not a root of unity, one can similarly show that the module \(\Omega^j M \) is not annihilated by \((x + (-\rho)^i y) J(T) \) for \(j \neq i \), whereas \(\Omega^i M \) is. Thus the modules \(\Omega^i M \) are pairwise nonisomorphic. Obviously, \(\dim_K \Omega^i M = 4 \) for all \(i \in \mathbb{Z} \). Consequently all modules in the \(DTr \)-orbits of \(M \) have the same dimension over \(K \).

Remarks. (1) We conjecture that a stable component of an Auslander-Reiten quiver is of the form \(\mathbb{Z} A_\infty \) if it contains infinitely many modules of the same length. It has been shown in [6] that this is the case if one of its \(DTr \)-orbits contains infinitely many modules of the same length.

(2) In [9, §4], the \(R \)-module \(M = (x + y)R \) has been used to give an example of an \(\Omega \)-bounded but not \(\Omega \)-periodic module. The following computation shows that \(DTr M \cong M \) in this case. The sequence

\[
R \xrightarrow{(x + (-\rho) y)} R \xrightarrow{(x + y)} M \to 0
\]

induces a sequence

\[
R \xrightarrow{(x + (-\rho)^2 y)} R \xrightarrow{(x + (-\rho)^2 y)} TrM \to 0;
\]
hence, $DTRM = \text{Hom}_K(R(x + (-\rho)^2y), K)$. This right R-module is annihilated by $x + (-\rho)y$ and hence, is isomorphic to $(x + y)R$. Note that the last argument does not work if one replaces R with T.

(3) Another example of an infinite DTr-orbit of bounded modules can be constructed by using Example 3.2 in [5].

References