Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The strong law of large numbers: a weak-$ l\sb 2$ view


Author: Bernard Heinkel
Journal: Proc. Amer. Math. Soc. 123 (1995), 273-280
MSC: Primary 60F15; Secondary 46B45, 46N30, 60E15, 60G50
DOI: https://doi.org/10.1090/S0002-9939-1995-1213860-X
MathSciNet review: 1213860
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ ({X_k})$ be a sequence of independent, centered, and square integrable real-valued random variables. To that sequence one associates

$\displaystyle \forall n \in \mathbb{N},\quad {\xi _n} = {\left\Vert {({2^{ - n}}{X_k}),\;{2^n} + 1 \leq k \leq {2^{n + 1}}} \right\Vert _{2,\infty }}.$

When there exists $ K \geq 1$ such that

$\displaystyle \sum\limits_{n \geq 1} {{P^K}({\xi _n} > {c_n}) < + \infty ,} $

where $ ({c_n})$ is a suitable sequence of positive constants, then the strong law of large numbers holds if and only if $ ({X_k}/k)$ converges almost surely to 0.

References [Enhancements On Off] (What's this?)

  • [1] J. C. Alt, Stabilité de sommes pondérées de variables aléatoires vectorielles, J. Multivariate Anal. 29 (1989), 137-154. MR 991061 (90f:60012)
  • [2] N. T. Andersen, E. Gine, M. Ossiander, and J. Zinn, The central limit theorem and the law of the iterated logarithm for empirical processes under local conditions, Probab. Th. Rel. Fields 77 (1988), 271-305. MR 927241 (89g:60009)
  • [3] B. Heinkel, Rearrangements of sequences of random variables and exponential inequalities, Probab. Math. Statist. 10 (1989), 247-255. MR 1057932 (91j:60009)
  • [4] -, Some exponential inequalities with applications to the central limit theorem in $ C[0,1]$, Probability in Banach Spaces 6, Progr. Probab., vol. 20, Birkhäuser, Boston, 1990, pp. 162-184. MR 1056710 (92b:60011)
  • [5] -, A law of large numbers for random vectors having large norms, Probability in Banach Spaces 7, Progr. Probab., vol. 21, Birkhäuser, Boston, 1990, pp. 105-125. MR 1105554 (92e:60011)
  • [6] J. Hoffman-Jørgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159-186. MR 0356155 (50:8626)
  • [7] T. Holmstedt, Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177-199. MR 0415352 (54:3440)
  • [8] A. N. Kolmogorov, Sur la loi forte des grands nombres, C. R. Acad. Sci. Paris 191 (1930), 910-912.
  • [9] M. Ledoux and M. Talagrand, Some applications of isoperimetric methods to strong limit theorems for sums of independent random variables, Ann. Probab. 18 (1990), 754-789. MR 1055432 (91i:60016)
  • [10] -, Probability in Banach spaces, Springer, Berlin, 1991. MR 1102015 (93c:60001)
  • [11] M. B. Marcus and G. Pisier, Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes, Acta Math. 152 (1984), 245-301. MR 741056 (86b:60069)
  • [12] S. J. Montgomery-Smith, The distribution of Rademacher sums, Proc. Amer. Math. Soc. 109 (1990), 517-522. MR 1013975 (91a:60034)
  • [13] S. V. Nagaev, On necessary and sufficient conditions for the strong law of large numbers, Theory Probab. Appl. 17 (1972), 573-581. MR 0312548 (47:1105)
  • [14] G. Pisier, De nouvelles caractérisations des ensembles de Sidon, Mathematical Analysis and Applications. Adv. in Math. Suppl. Stud. 7b (1981), 686-725. MR 634264 (82m:43011)
  • [15] Yu. V. Prohorov, Some remarks on the strong law of large numbers, Theory Probab. Appl. 4 (1959), 204-208. MR 0105740 (21:4476)
  • [16] W. F. Stout, Almost sure convergence, Academic Press, New York, 1974. MR 0455094 (56:13334)
  • [17] M. Talagrand, Isoperimetry and integrability of the sum of independent Banach space valued random variables, Ann. Probab. 17 (1989), 1546-1570. MR 1048946 (91e:60054)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60F15, 46B45, 46N30, 60E15, 60G50

Retrieve articles in all journals with MSC: 60F15, 46B45, 46N30, 60E15, 60G50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1213860-X
Keywords: Strong law of large numbers, Rademacher sums, weak-$ {l_p}$ spaces
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society