Isometries of noncommutative metric spaces
Author:
Efton Park
Journal:
Proc. Amer. Math. Soc. 123 (1995), 97-105
MSC:
Primary 46L85
DOI:
https://doi.org/10.1090/S0002-9939-1995-1213868-4
MathSciNet review:
1213868
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: A. Connes has shown that a unital -algebra equipped with an unbounded Fredholm module can be viewed as a "noncommutative" metric space. In this paper, the author defines a notion of an isometry of a noncommutative metric space, and computes several examples.
- [1] A. Connes, Compact metric spaces, Fredholm modules, and hyperfiniteness, Ergodic Theory Dynamical Systems 9 (1989), 207-220. MR 1007407 (90i:46124)
- [2] Alain Connes and John Lott, The metric aspect of noncommutative geometry, New Symmetry Principles in Quantum Field Theory (Cargèse, 1991), NATO Adv. Sci. Inst. Ser. B Phys., vol. 295, Plenum Press, New York, 1992, pp. 53-93. MR 1204452 (93m:58011)
- [3] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978. MR 514561 (80k:53081)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L85
Retrieve articles in all journals with MSC: 46L85
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1995-1213868-4
Keywords:
Noncommutative topology,
noncommutative geometry,
automorphisms of -algebras
Article copyright:
© Copyright 1995
American Mathematical Society