Triangular UHF algebras over arbitrary fields

Author:
R. L. Baker

Journal:
Proc. Amer. Math. Soc. **123** (1995), 67-79

MSC:
Primary 46K50; Secondary 16S99

DOI:
https://doi.org/10.1090/S0002-9939-1995-1215025-4

MathSciNet review:
1215025

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let *K* be an arbitrary field. Let be a sequence of positive integers, and let there be given a family of unital *K*-monomorphisms such that whenever , where is the *K*-algebra of all upper triangular matrices over *K*. A *triangular UHF* (*TUHF*) *K-algebra* is any *K*-algebra that is *K*-isomorphic to an algebraic inductive limit of the form . The first result of the paper is that if the embeddings satisfy certain natural dimensionality conditions and if is an arbitrary TUHF *K*-algebra, then is *K*-isomorphic to , only if the supernatural number, , of is less than or equal to the supernatural number, , of . Thus, if the embeddings also satisfy the above dimensionality conditions, then is *K*-isomorphic to , only if . The second result of the paper is a nontrivial "triangular" version of the fact that if *p, q* are positive integers, then there exists a unital *K*-monomorphism , only if . The first result of the paper depends directly on the second result.

**[AAR]**Donald J. Albers, Gerald L. Alexanderson, and Constance Reid (eds.),*More mathematical people*, Harcourt Brace Jovanovich, Publishers, Boston, MA, 1990. Contemporary conversations. MR**1143310****[B1]**Richard L. Baker,*Triangular UHF algebras*, J. Funct. Anal.**91**(1990), no. 1, 182–212. MR**1054118**, https://doi.org/10.1016/0022-1236(90)90052-M**[B2]**Richard L. Baker,*On certain Banach limits of triangular matrix algebras*, Houston J. Math.**23**(1997), no. 1, 127–141. MR**1688831****[BL]**T. S. Blyth,*Module theory*, 2nd ed., Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1990. An approach to linear algebra. MR**1070710****[PPW]**J. R. Peters, Y. T. Poon, and B. H. Wagner,*Triangular AF algebras*, J. Operator Theory**23**(1990), no. 1, 81–114. MR**1054818****[P1]**S. C. Power,*Classification of tensor products of triangular operator algebras*, Proc. London Math. Soc. (3)**61**(1990), no. 3, 571–614. MR**1069516**, https://doi.org/10.1112/plms/s3-61.3.571**[P2]**-,*The classification of triangular subalgebras of*-*algebras*, Bull London Math. Soc.**22**(1990), 264-272.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46K50,
16S99

Retrieve articles in all journals with MSC: 46K50, 16S99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1215025-4

Keywords:
Triangular UHF *K*-algebras,
*K*-algebras,
inductive limits

Article copyright:
© Copyright 1995
American Mathematical Society