Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Continuity of random derivations


Authors: M. V. Velasco and A. R. Villena
Journal: Proc. Amer. Math. Soc. 123 (1995), 107-120
MSC: Primary 46H40; Secondary 47B47, 47B80
DOI: https://doi.org/10.1090/S0002-9939-1995-1217455-3
MathSciNet review: 1217455
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we extend the well-known Johnson-Sinclair theorem in a stochastic sense showing that stochastically derivative linear random operators on semisimple Banach algebras are stochastically continuous. Besides, we prove that probably derivative linear random operators on semisimple Banach algebras are probably continuous.


References [Enhancements On Off] (What's this?)

  • [1] A. A. Albert, Structure of algebras, Amer. Math. Soc. Colloq. Publ., vol. 24, Amer. Math. Soc., Providence, RI, 1961. MR 0123587 (23:A912)
  • [2] W. G. Bade and P. C. Curtis Jr., Prime ideals and automatic continuity problems for Banach algebras, J. Funct. Anal. 29 (1978), 88-103. MR 499936 (80j:46077)
  • [3] -, Continuity of derivations of Banach algebras, J. Funct. Anal. 16 (1974), 372-387. MR 0358354 (50:10820)
  • [4] W. G. Bade and H. G. Dales, Continuity of derivations from radical convolution algebras, Studia Math. XCV (1989), 59-91. MR 1024275 (90k:46115)
  • [5] F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, New York, 1973. MR 0423029 (54:11013)
  • [6] M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006. MR 929422 (89d:16004)
  • [7] J. Cusak, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324. MR 0399182 (53:3033)
  • [8] -, Automatic continuity and topologically simple radical Banach algebras, J. London Math. Soc. 12 (1977), 493-500. MR 0461136 (57:1121)
  • [9] R. V. Garimella, Continuity of derivations on some semiprime Banach algebra, Proc. Amer. Math. Soc. 99 (1987), 289-292. MR 870787 (88b:46075)
  • [10] B. E. Johnson, Continuity of derivations on commutative algebras, Amer. J. Math. 91 (1969), 1-10. MR 0246127 (39:7433)
  • [11] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073. MR 0239419 (39:776)
  • [12] K. Kuratowski, Introducción a la teoría de conjuntos y a la topologia, Traducción de R. Rodriguez Vidal, Vicens-Vives, 1966.
  • [13] M. Ledoux and M. Talagrand, Probability in Banach spaces, Springer-Verlag, New York, 1991. MR 1102015 (93c:60001)
  • [14] J. Pettis, On integration in vectors spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304. MR 1501970
  • [15] J. R. Ringrose, Automatic continuity of derivations of operator algebras, J. London Math. Soc. 2 (1972), 432-438. MR 0374927 (51:11123)
  • [16] S. Sakai, On a conjecture of Kaplansky, Tôhoku Math. J. 12 (1960), 31-33. MR 0112055 (22:2913)
  • [17] M. V. Velasco and A. R. Villena, A random closed graph theorem, submitted.
  • [18] A. R. Villena, Continuity of derivations on a complete normed alternative algebra, J. Inst. Math. Comput. Sci. Math. Ser. 3 (1990), 99-106. MR 1105482 (92d:46131)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46H40, 47B47, 47B80

Retrieve articles in all journals with MSC: 46H40, 47B47, 47B80


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1217455-3
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society