Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Topology of factored arrangements of lines


Author: Luis Paris
Journal: Proc. Amer. Math. Soc. 123 (1995), 257-261
MSC: Primary 52B30; Secondary 55P20
DOI: https://doi.org/10.1090/S0002-9939-1995-1227528-7
MathSciNet review: 1227528
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A real arrangement of affine lines is a finite family $ \mathcal{A}$ of lines in $ {{\mathbf{R}}^2}$. A real arrangement $ \mathcal{A}$ of lines is said to be factored if there exists a partition $ \Pi = ({\Pi _1},{\Pi _2})$ of $ \mathcal{A}$ into two disjoint subsets such that the Orlik-Solomon algebra of $ \mathcal{A}$ factors according to this partition. We prove that the complement of the complexification of a factored real arrangement of lines is a $ K(\pi ,1)$ space.


References [Enhancements On Off] (What's this?)

  • [De] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273-302. MR 0422673 (54:10659)
  • [Fa] M. Falk, $ K(\pi ,1)$ arrangements, Topology (to appear). MR 1308492 (96c:52020)
  • [FJ] M. Falk and M. Jambu, Factorizations and colorings of combinatorial geometries, preprint, 1989.
  • [FR] M. Falk and R. Randell, On the homotopy theory of arrangements, Complex Analytic Singularities, Adv. Stud. Pure Math., vol. 8, North-Holland, Amsterdam, 1987, pp. 101-124. MR 894288 (88f:32045)
  • [Ja] M. Jambu, Fiber-type arrangements and factorization properties, Adv. Math. 80 (1990), 1-21. MR 1041881 (91g:52009)
  • [JS] T. Januszkiewicz and J. Swiatkowski, On the asphericity of plane arrangements, preprint, 1991.
  • [OS] P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), 167-189. MR 558866 (81e:32015)
  • [OT] P. Orlik and H. Terao, Arrangements of hyperplanes, Springer-Verlag, New York, 1992. MR 1217488 (94e:52014)
  • [Te1] H. Terao, Modular elements of lattices and topological fibration, Adv. Math. 62 (1986), 135-154. MR 865835 (88b:32032)
  • [Te2] -, Factorizations of Orlik-Solomon algebras, Adv. Math. 91 (1992), 45-53. MR 1144343 (92m:52024)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 52B30, 55P20

Retrieve articles in all journals with MSC: 52B30, 55P20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1227528-7
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society