FIXED-POINT SETS OF AUTOHOMEOMORPHISMS
OF COMPACT F-SPACES

K. P. HART AND J. VERMEER

(Communicated by Franklin D. Tall)

ABSTRACT. We investigate fixed-point sets of autohomeomorphisms of compact F-spaces. If the space in question is finite dimensional (in the sense of covering dimension), then the fixed-point set is a P-set; on the other hand there is an infinite-dimensional compact F-space with an involution whose fixed-point set is not a P-set.

In addition we show that under CH a closed subset of ω^* is a P-set iff it is the fixed-point set of an autohomeomorphism.

INTRODUCTION

In this note we investigate the fixed-point sets of autohomeomorphisms of compact F-spaces. In Vermeer [6, 7] the second author studied fixed-point sets of continuous self-maps of extremally and basically disconnected spaces. It was proved that whenever X is a compact κ-basically disconnected space (i.e., the Stone space of a κ-complete Boolean algebra) and $\phi: X \to X$ is injective and continuous, the fixed-point set of ϕ is a P_{κ}-set of X. In particular for a basically disconnected (i.e., ω_1-basically disconnected) space the fixed-point set of a self-embedding is always a P-set.

The methods used to obtain the above-mentioned result do not readily generalize to the natural extension of the class of basically disconnected spaces: the class of F-spaces. The point is that these methods relied heavily on the fact that a countable increasing union of clopen sets in a basically disconnected space has a clopen closure and this last property hardly ever holds nontrivially in general F-spaces.

Here we use results about fixed-point free extensions of fixed-point free maps to obtain the result that the fixed-point set of an autohomeomorphism of a finite-dimensional compact F-space is a P-set of that space. This seems to be new, even for the space ω^*.

If we assume the Continuum Hypothesis, then we can even show that a closed subset of ω^* is a P-set iff it is the fixed-point set of an autohomeomorphism.
K. P. HART AND J. VERMEER

(even an involution) of \(\omega^* \). This gives an external characterization of the \(P \)-sets in \(\omega^* \) and is a partial answer to Problem 218 of Hart and van Mill [4]. We finish the paper with an example of an infinite-dimensional compact \(F \)-space and an involution on it whose fixed-point set is not a \(P \)-set.

1. Preliminaries

By convention all spaces under consideration are completely regular. We call—as usual—a space \(X \) an \(F \)-space if every cozero set in it is \(C^* \)-embedded, i.e., if \(M \) is a cozero set of \(X \) and \(f : M \to \mathbb{R} \) is a bounded continuous function, then \(f \) can be extended to a bounded continuous function from \(X \) to \(\mathbb{R} \). For compact spaces this takes the following convenient form: A compact space \(X \) is an \(F \)-space iff for every \(F_\sigma \)-subset \(F \) of \(X \) the equality \(\cl F = \beta F \) holds. A rich supply of compact \(F \)-spaces can be gotten from the well-known fact that \(\beta X \setminus X \) is an \(F \)-space whenever \(X \) is \(\sigma \)-compact and locally compact.

We also need the characterization of \(\omega^* \) given by Parovičenko in [5]. This characterization is valid under the assumption of the Continuum Hypothesis (CH).

Theorem 1.1 (CH). A compact space \(X \) is homeomorphic to \(\omega^* \) if and only if it is a compact, zero-dimensional \(F \)-space of weight \(\mathfrak{c} \) without isolated points in which nonempty \(G_\delta \)-sets have nonempty interiors.

This theorem is particularly useful when one works with \(P \)-sets in \(\omega^* \); we recall that a subset of a space is a \(P \)-set if every \(G_\delta \)-set containing it is a neighbourhood of it or, equivalently, a set \(A \) is a \(P \)-set if for every \(F_\sigma \)-set \(F \) disjoint from it one has \(A \cap \cl F = \emptyset \).

For example, in the proof of Lemma 1.3 below we use the fact that \(\omega^* \setminus \Int A \) is homeomorphic to \(\omega^* \) whenever \(A \) is a \(P \)-set of \(\omega^* \). A second application occurs in the proof of Theorem 2.2.

From van Douwen and van Mill [2] we quote the following theorem, the homeomorphism extension theorem for nowhere dense \(P \)-sets.

Theorem 1.2 (CH). Let \(A \) and \(B \) be nowhere dense \(P \)-sets of \(\omega^* \) and \(h : A \to B \) a homeomorphism. Then there is an autohomeomorphism \(\hat{h} \) of \(\omega^* \) that extends \(h \).

We shall need the following mild extension of this theorem.

Lemma 1.3 (CH). Let \(A \) and \(B \) be proper \(P \)-subsets of \(\omega^* \), and let \(h : A \to B \) be a homeomorphism that maps the interior of \(A \) onto the interior of \(B \). Then there is an autohomeomorphism \(\hat{h} \) of \(\omega^* \) that extends \(h \).

Proof. Consider \(\omega^* \setminus \Int A \) and \(\omega^* \setminus \Int B \). As noted above both spaces are homeomorphic to \(\omega^* \) because \(A \) and \(B \) are \(P \)-sets.

The homeomorphism extension theorem for nowhere dense \(P \)-sets now gives us an extension \(h' : \omega^* \setminus \Int A \to \omega^* \setminus \Int B \) of the restriction \(h \mid \Fr A \). To finish we let \(\hat{h} = h \cup h' \).

The final result that we need is from van Douwen [1]. We use the term ‘finite-dimensional’ in the sense of the covering dimension \(\dim \).
Theorem 1.4. Let X be a finite-dimensional paracompact space and $f : X \to X$ a closed self-map for which there is a natural number k such that $|f^{-1}(x)| \leq k$ for all $x \in X$. Then f has a fixed point if and only if βf has a fixed point.

2. **Finite-dimensional spaces**

We get our first result by a judicious application of van Douwen's theorem.

Theorem 2.1. Let X be a compact finite-dimensional F-space and $\phi : X \to X$ a continuous and injective map. The fixed-point set F of ϕ is a P-set of X.

Proof. Let K be an F_σ-subset of X that is disjoint from F. We must show that $\text{cl} K$ is disjoint from F. To this end we take the set $L = \bigcup_{k \in \mathbb{Z}} \phi^k[K]$. Observe that L is also an F_σ-set that is disjoint from F; that L is an F_σ-set is clear. To see that L contains no fixed points of ϕ combine the facts that K contains none and that ϕ is injective. It is also clear that $\phi[L] \subseteq L$. Finally we observe that $\phi \upharpoonright L$ is closed: use the fact that $\phi^{-1}[L] = L$.

Now, because X is an F-space, we have $\text{cl} L = \beta L$. Then van Douwen's theorem implies that $\text{cl} L$ contains no fixed points of ϕ either. It follows that $\text{cl} L \cap F = \emptyset$, so certainly $\text{cl} K \cap F = \emptyset$. \(\square\)

For the space ω^* we can reverse the implication, provided we assume CH.

Theorem 2.2 (CH). A closed subset A of ω^* is a P-set iff it is the fixed-point set of some autohomeomorphism of ω^*.

Proof. Let A be a P-set of ω^*. We shall find an autohomeomorphism ϕ of ω^* of which A is the fixed-point set; indeed, ϕ will be an involution, i.e., ϕ^2 is the identity.

Consider $\omega^* \times 2$ and identify, for every $x \in A$, the points $(x, 0)$ and $(x, 1)$ (we glue the two copies of ω^* together along the copies of A). Because A is a P-set, the resulting quotient space Q is homeomorphic to ω^*: it satisfies the conditions from Parovičenko's theorem.

Define an autohomeomorphism ψ of Q by sending $(x, 0)$ to $(x, 1 - i)$ for every x. Clearly ψ^2 is the identity and the copy A_Q of A in Q is the fixed-point set of ψ.

It remains to turn ψ into an autohomeomorphism of ω^* whose fixed-point set is A itself.

The identity $\text{Id} : A_Q \to A$ is a homeomorphism that maps the interior of A_Q onto the interior of A and so by Lemma 1.3 it may be extended to a homeomorphism $h : Q \to \omega^*$. In the end we take $\phi = h \circ \psi \circ h^{-1}$ of course. \(\square\)

3. **Infinite-dimensional spaces**

In this section we give an example of compact infinite-dimensional F-space X and an autohomeomorphism ϕ of X whose fixed-point set is not a P-set. Again ϕ can be taken to be an involution.

Our starting point is the following example, considered by van Douwen in [1]. Let $S = \bigoplus_n S^n$, where S^n is the standard n-sphere. Next let $\phi : S \to S$ be the sum of the antipodal mappings. Now ϕ has no fixed points, yet $\beta \phi$ does have fixed points; this can be seen as follows: if $\beta \phi$ would have no fixed points, then there would be a finite closed cover $\{F_1, \ldots, F_n\}$ of βS such
that $\beta\phi[F_i] \cap F_i = \emptyset$ for all i. However, the Lusternik-Schnirelman-Borsuk Theorem (Dugundji and Granas [3, Theorem 4.4]) implies that $\phi[F_i] \cap F_i \cap S^n \neq \emptyset$ for some i.

To begin we take for every n the closed n-ball B^n. Remove the origin and call the result X_n. The antipodal map e_n on X_n has no fixed points and, as $\text{dim } X_n = n$, neither do βe_n and $e_n^* = \beta e_n \mid X_n^*$ (apply Theorem 1.4). Also note that X_n^* is an F-space.

Write $X = \bigoplus_n \beta X_n$ and $e = \bigoplus_n \beta e_n$. The map e has no fixed points but βe has many of them: for any sequence $(S_n)_n$ of spheres centered at the origins of the B^n we get fixed points of βe in the closure of $\bigoplus_n S_n$.

Now take any neighbourhood of $(\bigoplus_n X_n^*)^*$ in βX; it contains a tail of a sequence of spheres as in the preceding paragraph and hence a fixed point of βe. But then $(\bigoplus_n X_n^*)^*$ contains fixed points of βe as well.

Our example is the closure of $\bigoplus_n X_n^*$ in βX, and the map ϕ is the restriction of βe. It is clearly an F-space, and the (nonempty) fixed-point set of ϕ is contained in the nowhere dense G_δ-set $(\bigoplus_n X_n^*)^*$.

References