Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A rim-metrizable continuum


Authors: J. Nikiel, L. B. Treybig and H. M. Tuncali
Journal: Proc. Amer. Math. Soc. 123 (1995), 281-286
MSC: Primary 54F15; Secondary 54B15, 54C05
DOI: https://doi.org/10.1090/S0002-9939-1995-1260177-3
MathSciNet review: 1260177
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A locally connected rim-metrizable continuum is constructed which admits a continuous mapping onto a non rim-metrizable space.


References [Enhancements On Off] (What's this?)

  • [1] M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478-483. MR 0115157 (22:5959)
  • [2] R. Engelking, General topology, PWN, Warsaw, 1977. MR 0500780 (58:18316b)
  • [3] R. J. Fokkink and L. G. Oversteegen, The geometry of laminations (in preparation).
  • [4] G. R. Gordh, Jr., and S. Mardešić, Characterizing local connectedness in inverse limits, Pacific J. Math. 58 (1975), 411-417. MR 0385784 (52:6643)
  • [5] J. Grispolakis, J. Nikiel, J. N. Simone, and E. D. Tymchatyn, Separators in continuous images of ordered continua and hereditarily locally connected continua, Canad. Math. Bull. (to appear). MR 1222529 (94d:54066)
  • [6] S. Mardešić, Images of ordered compacta are locally peripherally metric, Pacific J. Math. 23 (1967), 557-568. MR 0221478 (36:4530)
  • [7] J. Nikiel, H. M. Tuncali, and E. D. Tymchatyn, On the rim-structure of continuous images of ordered compacta, Pacific J. Math. 149 (1991), 145-155. MR 1099788 (92c:54046)
  • [8] -, A locally connected rim-countable continuum which is the continuous image of no arc, Topology Appl. 42 (1991), 83-93. MR 1135783 (92j:54046)
  • [9] H. M. Tuncali, Some generalizations of the Hahn-Mazurkiewicz theorem, Ph.D. Thesis, University of Saskatchewan, Saskatoon, 1989.
  • [10] -, Analogues of Treybig's product theorem, Proc. Amer. Math. Soc. 108 (1990), 855-858. MR 931738 (90e:54081)
  • [11] -, Concerning continuous images of rim-metrizable continua, Proc. Amer. Math. Soc. 113 (1991), 461-470. MR 1069694 (91m:54012)
  • [12] G. T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320-324. MR 0099638 (20:6077)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F15, 54B15, 54C05

Retrieve articles in all journals with MSC: 54F15, 54B15, 54C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1260177-3
Keywords: Continuum, locally connected, rim-metrizable, continuous image, inverse limit
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society