A rim-metrizable continuum

Authors:
J. Nikiel, L. B. Treybig and H. M. Tuncali

Journal:
Proc. Amer. Math. Soc. **123** (1995), 281-286

MSC:
Primary 54F15; Secondary 54B15, 54C05

DOI:
https://doi.org/10.1090/S0002-9939-1995-1260177-3

MathSciNet review:
1260177

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A locally connected rim-metrizable continuum is constructed which admits a continuous mapping onto a non rim-metrizable space.

**[1]**M. Brown,*Some applications of an approximation theorem for inverse limits*, Proc. Amer. Math. Soc.**11**(1960), 478-483. MR**0115157 (22:5959)****[2]**R. Engelking,*General topology*, PWN, Warsaw, 1977. MR**0500780 (58:18316b)****[3]**R. J. Fokkink and L. G. Oversteegen,*The geometry of laminations*(in preparation).**[4]**G. R. Gordh, Jr., and S. Mardešić,*Characterizing local connectedness in inverse limits*, Pacific J. Math.**58**(1975), 411-417. MR**0385784 (52:6643)****[5]**J. Grispolakis, J. Nikiel, J. N. Simone, and E. D. Tymchatyn,*Separators in continuous images of ordered continua and hereditarily locally connected continua*, Canad. Math. Bull. (to appear). MR**1222529 (94d:54066)****[6]**S. Mardešić,*Images of ordered compacta are locally peripherally metric*, Pacific J. Math.**23**(1967), 557-568. MR**0221478 (36:4530)****[7]**J. Nikiel, H. M. Tuncali, and E. D. Tymchatyn,*On the rim-structure of continuous images of ordered compacta*, Pacific J. Math.**149**(1991), 145-155. MR**1099788 (92c:54046)****[8]**-,*A locally connected rim-countable continuum which is the continuous image of no arc*, Topology Appl.**42**(1991), 83-93. MR**1135783 (92j:54046)****[9]**H. M. Tuncali,*Some generalizations of the Hahn-Mazurkiewicz theorem*, Ph.D. Thesis, University of Saskatchewan, Saskatoon, 1989.**[10]**-,*Analogues of Treybig's product theorem*, Proc. Amer. Math. Soc.**108**(1990), 855-858. MR**931738 (90e:54081)****[11]**-,*Concerning continuous images of rim-metrizable continua*, Proc. Amer. Math. Soc.**113**(1991), 461-470. MR**1069694 (91m:54012)****[12]**G. T. Whyburn,*Topological characterization of the Sierpiński curve*, Fund. Math.**45**(1958), 320-324. MR**0099638 (20:6077)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54F15,
54B15,
54C05

Retrieve articles in all journals with MSC: 54F15, 54B15, 54C05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1260177-3

Keywords:
Continuum,
locally connected,
rim-metrizable,
continuous image,
inverse limit

Article copyright:
© Copyright 1995
American Mathematical Society