Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Positive definite functions of Hopf $ C\sp *$-algebras


Author: Xiu Chi Quan
Journal: Proc. Amer. Math. Soc. 123 (1995), 615-625
MSC: Primary 46L05; Secondary 16W30, 17B37
MathSciNet review: 1209427
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study positive definite functions of Hopf $ {C^ \ast }$-algebras. First of all, we introduce Fourier transformation on Hopf $ {C^\ast}$-algebras and use Fourier transform to characterize positive definite functions. Then we proceed to study smooth positive definite functions on Hopf $ {C^\ast}$-algebras. A complete description of smooth positive definite functions is obtained. Also, a Bochner type result for smooth positive definite functions is proved.


References [Enhancements On Off] (What's this?)

  • [A] Eiichi Abe, Hopf algebras, Cambridge Tracts in Mathematics, vol. 74, Cambridge University Press, Cambridge-New York, 1980. Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka. MR 594432 (83a:16010)
  • [CG] Henri Cartan and Roger Godement, Théorie de la dualité et analyse harmonique dans les groupes abéliens localement compacts, Ann. Sci. École Norm. Sup. (3) 64 (1947), 79–99 (French). MR 0023241 (9,326d)
  • [HR] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773 (41 #7378)
  • [Q1] X. Quan, Representations of Hopf $ {C^\ast}$-algebras. I, II, preprint.
  • [Q2] -, Krien algebras and structure of Hopf $ {C^\ast}$-algebras, preprint.
  • [V] J. Vallin, $ {C^\ast}$-Algebre de Hopf et $ {C^\ast}$-algebre de Kac, Proc. London Math. Soc. (3) 50 (1985), 131-174.
  • [W1] S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613–665. MR 901157 (88m:46079)
  • [W2] -, Twisted $ SU(n)$ group, Tanaka-Krein duality, Invent. Math. 93 (1989), 35-76.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L05, 16W30, 17B37

Retrieve articles in all journals with MSC: 46L05, 16W30, 17B37


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1995-1209427-X
PII: S 0002-9939(1995)1209427-X
Article copyright: © Copyright 1995 American Mathematical Society