On the ideal structure of algebras of star-algebra valued functions

Author:
Jorma Arhippainen

Journal:
Proc. Amer. Math. Soc. **123** (1995), 381-391

MSC:
Primary 46J20; Secondary 46K05

DOI:
https://doi.org/10.1090/S0002-9939-1995-1215198-3

MathSciNet review:
1215198

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The ideal structure of the algebra has been studied in many papers under various topological assumptions on the space *X* and the algebra *A*. In this paper we shall study the case where *X* is a completely regular topological space and *A* is a locally convex star algebra. In such case the structure of closed (proper) ideals can be described not only by using points of *X* and some family of closed ideals of *A*, as usual, but also by using points of the carrier space of *A* and some family of closed ideals of depending on those points and also by using different kind of slice ideals of .

**[1]**M. Abel,*Description of closed ideals in algebras of continuous vector-valued functions*, Math. Notes, vol. 30, Princeton Univ. Press, Princeton, NJ, 1981, pp. 887-892.**[2]**R. Arens,*A generalization of normed rings*, Pacific J. Math.**4**(1952), 455-471. MR**0051445 (14:482b)****[3]**J. Arhippainen,*On the ideal structure and approximation properties of algebras of continuous*-*algebra valued functions*, Acta Univ. Oulu. Ser. A Sci. Rerum Natur.**187**(1987). MR**918787 (88m:46065)****[4]**-,*On commutative locally m-convex algebras*, Acta et Comm. Univ. Tartuensis**928**(1991), 15-28. MR**1150230 (93b:46098)****[5]**-,*On the ideal structure of algebras of LMC-algebra valued functions*, Studia Math.**101**(1992), 311-318. MR**1153787 (93g:46049)****[6]**-,*On locally convex square algebras*, Preprint series in Math., Univ. of Oulu, 1992.**[7]**E. Beckenstein, L. Narici, and S. Suffel,*Topological algebras*, North-Holland, New York, 1977. MR**0473835 (57:13495)****[8]**W. Dietrich,*The maximal ideal space of the topological algebra*, Math. Ann.**183**(1969), 201-212. MR**0254605 (40:7813)****[9]**-,*Function algebras on completely regular spaces*, Diss., Northwestern Univ., Evanston, IL, 1971.**[10]**J. Dugundji,*Topology*, Allyn and Bacon, Boston, 1966. MR**0193606 (33:1824)****[11]**W. Hery,*Rings of continuous Banach algebra-valued functions*, Doct. Diss. Absttrs 45, Polytech. Instit. of New York, 1974.**[12]**-,*Maximal ideals in algebras of continuous*valued functions, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8)**58**(1975), 195-199. MR**0423060 (54:11043)****[13]**-,*Maximal ideals in algebras of topological algebra valued functions*, Pacific J. Math.**65**(1976), 365-373. MR**0435854 (55:8805)****[14]**A. Mallios,*Topological algebras selected topics*, Elsevier, New York, 1986. MR**857807 (87m:46099)****[15]**E. Michael,*Locally multiplicatively m-convex topological algebras*, Mem. Amer. Math. Soc., vol. 11, Amer. Math. Soc., Providence, RI, 1952. MR**0051444 (14:482a)****[16]**P. Morris and D. Wulbert,*Functional representation of topological algebras*, Pacific J. Math.**22**(1967), 323-337. MR**0213876 (35:4730)****[17]**L. Nachbin,*Elements of approximation theory*, Van Nostrand, Princeton, NJ, 1967. MR**0217483 (36:572)****[18]**J. Prolla,*Approximation of vector-valued functions*, North-Holland, Amsterdam, 1977. MR**0500122 (58:17822)****[19]**-,*On the spectra of non-Archimedean function algebras*, Lecture Notes in Math., vol. 843, Springer-Verlag , New York, 1980, pp. 547-560. MR**610845 (82k:32043)****[20]**-,*Topological algebras of vector-valued continuous functions*, Math. Anal. Appl. Part B. Adv. in Math. Supplementary Studies. Vol. B (1981), 727-740. MR**634265 (83b:46069)****[21]**B. Yood,*Banach algebras of continuous functions*, Pacific J. Math.**3**(1951), 30-48. MR**0042068 (13:48c)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46J20,
46K05

Retrieve articles in all journals with MSC: 46J20, 46K05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1215198-3

Article copyright:
© Copyright 1995
American Mathematical Society