ON THE DIOPHANTINE EQUATION $2^n + px^2 = y^p$

LE MAOHUA

(Communicated by William Adams)

Abstract. Let p be a prime with $p > 3$. In this paper we prove that: (i) the equation $2^n + px^2 = y^p$ has no positive integer solution (x, y, n) with $\gcd(x, y) = 1$; (ii) if $p \not\equiv 7 \pmod{8}$, then the equation has no positive integer solution (x, y, n).

1. Introduction

Let \mathbb{Z}, \mathbb{N}, \mathbb{Q} be the sets of integers, positive integers, and rational numbers, respectively. Let p be an odd prime. In [7], Rabinowitz found all solutions (x, y, n) of the equation

$$2^n + px^2 = y^p, \quad x, y, n \in \mathbb{N},$$

for $p = 3$. In this paper we prove the following results.

Theorem 1. If $p > 3$, then (1) has no solution (x, y, n) with $\gcd(x, y) = 1$.

Theorem 2. If $p > 3$ and $p \not\equiv 7 \pmod{8}$, then (1) has no solution (x, y, n).

2. Lemmas

Lemma 1 [2, Formula 1.76]. For any $m \in \mathbb{N}$ and any complex numbers α, β, we have

$$\alpha^m + \beta^m = \sum_{j=0}^{[m/2]} (-1)^j \left[\begin{array}{c} m \\ j \end{array} \right] (\alpha + \beta)^{m-2j} (\alpha \beta)^j,$$

where

$$\left[\begin{array}{c} m \\ j \end{array} \right] = \frac{(m-j-1)!m}{(m-2j)!j!} \in \mathbb{N}, \quad j = 0, \ldots, [m/2]. \quad \square$$

Let $D \in \mathbb{N}$ be squarefree, and let $h(-D)$ denote the class number of $\mathbb{Q}(\sqrt{-D})$.

Lemma 2 [5]. If $D > 2$, then the equation

$$1 + DX^2 = Y^n, \quad X, Y, n \in \mathbb{N}, \ Y > 1, \ n > 2,$$

has no solution (X, Y, n) with $n \nmid h(-D). \quad \square$

Received by the editors October 26, 1992 and, in revised form, April 26, 1993.
1991 Mathematics Subject Classification. Primary 11D61, 11J86.
Supported by the National Natural Science Foundation of China.

©1994 American Mathematical Society
0002-9939/94 $1.00 + .25$ per page
Lemma 3 [3]. The equations

\[1 + DX^2 = 2Y^n, \quad D \equiv 1 \pmod{4}, X, Y, n \in \mathbb{N}, Y > 1, n > 2, 2 \nmid nY, \]

and

\[1 + DX^2 = 4Y^n, \quad D \equiv 3 \pmod{4}, X, Y, n \in \mathbb{N}, Y > 1, n > 2, 2 \nmid nY, \]

have no solution \((X, Y, n)\) with \(n \nmid h(-D)\).

Lemma 4 [6]. If \(2 \nmid D\) and \(D \geq 3\), then the equation

\[2 + DX^2 = Y^n, \quad X, Y, n \in \mathbb{N}, Y > 1, n > 2, \]

has no solution \((X, Y, n)\) with \(n \nmid h(-2D)\).

Lemma 5. If \(p > 3\) and \(p \equiv 3 \pmod{8}\), then the equation

\[X^p - 2^p = Y^2, \quad X, Y \in \mathbb{N}, X \equiv 3 \pmod{8}, \]

has no solution \((X, Y)\).

Proof. Let \((X, Y)\) be a solution of (2), and let \(A = (X^p - 2^p)/(X - 2), B = (X^{(p-1)/2} - 2^{(p-1)/2})/(X - 2)\). Since \(p > 3\), \(X \equiv 3 \pmod{8}\), and \(X - 2 \equiv 0 \pmod{p}\) by (2), we have \(B \in \mathbb{N}\) such that \(B \equiv 3 \pmod{8}\), \(B \equiv 2^{(p-3)/2}(p-1)/2 \pmod{p}\), and \(A \equiv 2^{p-1} \pmod{B}\). Let (*/*) denote the Kronecker symbol. Then we have

\[\left(\frac{A}{B} \right) = \left(\frac{2^{p-1}}{B} \right) = 1, \]

and by (2),

\[\left(\frac{A}{B} \right) = \left(\frac{pY^2}{B} \right) = \left(\frac{p}{B} \right) = -\left(\frac{B}{p} \right) = -\left(\frac{2^{(p-3)/2}(p-1)/2}{p} \right) = \left(\frac{2}{p} \right) = -1, \]

which contradicts (3). Thus (2) has no solution \((X, Y)\).

Lemma 6 [1]. If \(p \notin \{1093, 3511\}\) and \(2^{p-1} \equiv 1 \pmod{p^2}\), then \(p > 3 \cdot 10^9\).

Let \(\alpha\) be an algebraic number with the minimal polynomial

\[a_0 z^d + \cdots + a_d = a_0 \prod_{i=1}^{d} (z - \sigma_i \alpha), \quad a_0 > 0, \]

where \(\sigma_1 \alpha, \ldots, \sigma_d \alpha\) are conjugates of \(\alpha\). Then

\[H(\alpha) = \frac{1}{d} \left(\log a_0 + \sum_{i=1}^{d} \log \max(1, |\sigma_i \alpha|) \right) \]

is called Weil’s height of \(\alpha\). Let \(\alpha_1, \alpha_2\) be nonzero algebraic numbers which are multiplicatively dependent, and let \(r\) denote the degree of \(\mathbb{Q}(\alpha_1, \alpha_2)\). For \(j = 1, 2\), let \(\log \alpha_j\) be any nonzero determination of the logarithm of \(\alpha_j\), and let \(A_j = \max(1, H(\alpha_j) + \log 2, e^{2|\log \alpha_j|/r})\). Then we have:
Lemma 7. If \(r = 2 \) and \(\Delta = b_1 \log \alpha_1 - b_2 \log \alpha_2 \neq 0 \) for some \(b_1, b_2 \in \mathbb{N} \) with \(\max(b_1, b_2) \geq 10^6 \), then \(|\Delta| \geq \exp(-704A_1A_2(1 + \log B + \log \log 2B)^2) \) where \(B = \max(b_1, b_2) \).

Proof. Under the above hypotheses, by the definitions in [4], we may choose \(\theta = 12, Z = 3, G = 1 + \log B + \log \log 2B, c = 9.15, c_0 = 136.89, c_1 = 2.84, \) and \(C/Z^3 = 44 \) by [4, Figure 4]. The lemma follows immediately from [4, Theorem 5.11]. \(\square \)

3. Proofs

Proof of Theorem 1. Let \((x, y, n)\) be a solution of (1) with \(\gcd(x, y) = 1 \). Then \(2 \nmid xy \). By Lemma 4, it suffices to prove the case that \(n \geq 2 \).

If \(2 \mid n \), then \(n = 2m \), where \(m \in \mathbb{N} \) with \(m \geq 1 \). Since the class number of \(\mathbb{Q}(\sqrt{-p}) \) is less than \(p \), we get from (1) that

\[
2^m + x\sqrt{-p} = (x_1 + y_1\sqrt{-p})^p,
\]

where \(x_1, y_1 \in \mathbb{Z} \) satisfying

\[
x_1^2 + py_1^2 = y, \quad \gcd(x_1, y_1) = 1.
\]

By Lemma 1, we get from (4) that

\[
2^{m+1} = (x_1 + y_1\sqrt{-p})^p + (x_1 - y_1\sqrt{-p})^p \equiv 2x_1 \sum_{k=0}^{(p-1)/2} (-1)^k \binom{p}{k} (2x_1)^{p-2k-1} y^k,
\]

whence we obtain \(x_1 = \pm 2^m \) and

\[
\pm 1 = \sum_{k=0}^{(p-1)/2} (-1)^k \binom{p}{k} 2^{(m+1)(p-2k-1)} y^k.
\]

Since \(2^{p-1} \equiv 1 \pmod{p} \), we have

\[
1 = \sum_{k=0}^{(p-1)/2} (-1)^k \binom{p}{k} 2^{(m+1)(p-2k-1)} y^k = (-1)^{(p-1)/2} p y^{(p-1)/2}
\]

\[
+ \sum_{k=1}^{(p-1)/2} (-1)^{(p-1)/2-k} \times \left[\binom{p}{(p-1)/2-k} \right] 2^{(m+1)k} y^{(p-1)/2-k},
\]

by (6). Recall that \(x_1 = \pm 2^m \) and \(m \geq 1 \). We see from (5) that \(p \equiv y \pmod{4} \) and \(py \equiv 1 \pmod{4} \). Let \(2^a \mid p - 1 \). Then we have

\[
2^a \mid (-1)^{(p-1)/2} p y^{(p-1)/2} - 1.
\]

It is a well-known fact that \(\text{ord}_2(2k + 1)! < 2k \) for any \(k \in \mathbb{N} \). By Lemma 1, we have

\[
\left[\frac{p}{(p-1)/2-k} \right] 2^{2(m+1)k} = p \frac{2^{2(m+1)k}}{(2k + 1)!} \prod_{i=1}^{2k} \left(\frac{p-1}{2} - k + i \right) \equiv 0 \pmod{2^{2mk+a}}, \quad k \geq 1.
\]
On combining (9) with (8), (7) is impossible. Thus (1) has no solution \((x, y, n)\) with \(\gcd(x, y) = 1\) and \(2 \mid n\).

If \(2 \nmid n\), then \(n = 2m + 1\), where \(m \in \mathbb{N}\). Notice that the class number of \(\mathbb{Q}(\sqrt{-2p})\) is less than \(p\). We get from (1) that

\[
2^m \sqrt{2} + x \sqrt{-p} = (x'_1 \sqrt{2} + y'_1 \sqrt{-p})^p,
\]

where \(x'_1, y'_1 \in \mathbb{Z}\) satisfying

\[
2x'_1^2 + py'_1^2 = y, \quad \gcd(x'_1, y'_1) = 1.
\]

By Lemma 1, we obtain from (10) that

\[
2^{m+1} = 2x'_1 \sum_{k=0}^{(p-1)/2} (-1)^k \binom{p}{k} 2^{(2m+1)(p-1)/2-k} y^k,
\]

whence we get \(x'_1 = \pm 2^m\) and

\[
\pm 1 = \sum_{k=0}^{(p-1)/2} (-1)^k \binom{p}{k} 2^{(2m+1)(p-1)/2-k} y^k.
\]

Since \(2^{(p-1)/2} \equiv \delta \pmod{p}\) with \(\delta \in \{-1, 1\}\), we have

\[
\delta = (-1)^{(p-1)/2} py^{(p-1)/2} + \sum_{k=1}^{(p-1)/2} (-1)^{(p-1)/2-k} \binom{p}{(p-1)/2-k} 2^{(2m+1)(p-1)/2-k} y^k
\]

by (12). Recall that \(x'_1 = \pm 2^m\) and \(m > 1\). We see from (11) that \(p \equiv y\pmod{8}\) and \(py \equiv 1\pmod{8}\). By much the same argument as in the proof for the case that \(2 \mid n\), (13) is impossible for \(\delta = 1\) and for \(\delta = -1, p \equiv 1\pmod{4}\). Further, if \(\delta = -1\) and \(p \equiv 3\pmod{4}\), then \(p \equiv 3\pmod{8}\), since \(2^{(p-1)/2} + 1 \equiv 0\pmod{p}\) and \(-2\) is a quadratic residue modulo \(p\).

On the other hand, we find from (10) and (13) that

\[
-1 = 2^{(2m+1)(p-1)/2} + \sum_{k=1}^{(p-1)/2} (-1)^k \binom{p-1}{2k} 2^{(2m+1)(p-1)/2-k} (py'1^2)^k
\]

for \(\delta = -1\), whence we get

\[
2^{(2m+1)(p-1)/2} \equiv -1 \pmod{p^2}.
\]

This implies that either

\[
2m + 1 \equiv 0 \pmod{p}
\]

or

\[
2^{p-1} \equiv 1 \pmod{p^2}.
\]

If (15) holds, then \(2m + 1 = lp\) and

\[
y^p - 2^l p = px^2
\]

by (1), where \(l \in \mathbb{N}\). We see from equality (17) that \(y \equiv 2^l \pmod{p}\),
\[\gcd(y - 2^l, (y^p - 2^{lp})/(y - 2^l)) = p, \quad \text{and} \quad p^2 \mid (y^p - 2^{lp})/(y - 2^l). \] Therefore, \[(18) \quad y - 2^l = x'^2, \]
and
\[(19) \quad \frac{y^p - 2^{lp}}{y - 2^l} = px'^2, \]
where \(x', x'' \in \mathbb{N}\) with \(x'x'' = x\). Recall that \(p \equiv y \pmod{8}\) and \(p \equiv 3 \pmod{8}\). We have \(y \equiv 3 \pmod{8}\) and \(l = 1\) by (18) and, hence,
\[\frac{y^p - 2^p}{y - 2} = px'^2 \]
by (19). Since \(p > 3\) and \(y \equiv 3 \pmod{8}\), it is impossible by Lemma 5. Therefore, by Lemma 6, we get from (16) that
\[(20) \quad p > 3 \cdot 10^9. \]
Let \(e = 2^{m+\sqrt{2}} + y_1^{\sqrt{2}} - p, \quad \bar{e} = 2^{m-\sqrt{2}} - y_1^{\sqrt{2}} - p \). Then \(e + \bar{e} = 2^{m+\sqrt{2}} - y_1^{\sqrt{2}} - p\). Then \(e + \bar{e} = 2^{m+\sqrt{2}} - y_1^{\sqrt{2}} - p\). Then \(e + \bar{e} = 2^{m+\sqrt{2}} - y_1^{\sqrt{2}} - p\). Then \(e + \bar{e} = 2^{m+\sqrt{2}} - y_1^{\sqrt{2}} - p\). Then \(e + \bar{e} = 2^{m+\sqrt{2}} - y_1^{\sqrt{2}} - p\). Then \(e + \bar{e} = 2^{m+\sqrt{2}} - y_1^{\sqrt{2}} - p\). Then \(e + \bar{e} = 2^{m+\sqrt{2}} - y_1^{\sqrt{2}} - p\).

\[|e + \bar{e}| = |e| = \sqrt{y}; \quad \text{and} \quad |e + \bar{e}| = |e + \bar{e}| = |e + \bar{e}|. \]
by (13). This implies that
\[(21) \quad \log|e + \bar{e}| = p \log|e| + \log(-\bar{e}/e)^p - 1. \]
For any complex number \(z\), we have either \(|e^z - 1| > 1/2\) or \(|e^z - 1| \geq |z - k\pi \sqrt{-1}|/2\) for some \(k \in \mathbb{Z}\). Put \(e^z = (-\bar{e}/e)^p\). If \(|e^z - 1| > 1/2\), then from (1), (11), and (21) we get
\[8y > 8(y - py^2) = 2^{n+3} = 2^{2m+4} > yp, \]
a contradiction. If \(|e^z - 1| \geq |z - k\pi \sqrt{-1}|/2\) for some \(k \in \mathbb{Z}\), then from (21) we get
\[(22) \quad \log|e + \bar{e}| = p \log|e| + \log(p \log(-\bar{e}/e) - k \log(-1)) - \log 2, \]
where \(k \in \mathbb{Z}\) with \(|k| \leq p\). By (11), \(-\bar{e}/e\) satisfies
\[y(-\bar{e}/e)^2 + 2(2^{m+1} - py^2)(-\bar{e}/e) + y = 0. \]
It implies that \(-\bar{e}/e\) is not a root of unity, its degree is 2, and its Weil's height \(H(-\bar{e}/e) = \log \sqrt{y}\). Therefore, we have \(|p \log(-\bar{e}/e) - k \log(-1)| \neq 0\), and by Lemma 7,
\[\left| p \log \left(-\frac{\bar{e}}{e} \right) - k \log(-1) \right| \]
\[\geq \exp \left(-704 \left(\frac{e^2 \pi}{2} \right) \left(\log 2 \sqrt{y} \right) \left(1 + \log p + \log \log 2p \right)^2 \right) \]
\[> \exp(-8200(\log 2 \sqrt{y})(1 + \log p + \log \log 2p)^2) \]
with (20). Substituting (23) into (22),
\[\log 2 + \log 2 \sqrt{y} + 8200(\log 2 \sqrt{y})(1 + \log p + \log \log 2p)^2 > p \log \sqrt{y}. \]
Since \(y \geq 8 + p\), if (20) holds, then (24) is impossible. The theorem is proved. \(\Box\)
Proof of Theorem 2. By Theorem 1, it suffices to prove the case that $\gcd(x, y) > 1$. Then we have one of the following three cases:

\begin{align*}
(25) & \quad 2^n' + pX_1^2 = Y_1^p, \quad X_1, Y_1, n' \in \mathbb{N}, \gcd(X_1, Y_1) = 1; \\
(26) & \quad 1 + 2^p X_2^2 = Y_2^p, \quad X_2, Y_2 \in \mathbb{N}, 2 \nmid Y_2, r \in \{1, 2\}; \\
(27) & \quad 1 + pX_3^2 = 2^r Y_3^p, \quad X_3, Y_3, r \in \mathbb{N}, 2 \nmid X_3 Y_3.
\end{align*}

The case (25) is trivial. By Lemma 2, (26) is impossible, since $p > \max(h(-p), h(-2p))$. Finally, if $p \not\equiv 7 \pmod{8}$, then $r \in \{1, 2\}$ in (27). It follows that $p \equiv 1 \pmod{4}$, y odd if $r = 1$, and that $p \equiv 3 \pmod{8}$, y odd if $r = 2$. This is impossible by Lemma 3. The theorem is proved. \(\Box\)

ACKNOWLEDGMENT

The author thanks the referee for his valuable suggestions.

REFERENCES

RESEARCH DEPARTMENT, CHANGSHA RAILWAY INSTITUTE, CHANGSHA, HUNAN, PEOPLE’S REPUBLIC OF CHINA

Current address: Department of Mathematics, Zhanjiang Teachers College, P. O. Box 524048, Zhanjiang, Guangdong, People’s Republic of China