Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Diophantine equation $ 2\sp n+px\sp 2=y\sp p$


Author: Mao Hua Le
Journal: Proc. Amer. Math. Soc. 123 (1995), 321-326
MSC: Primary 11D61; Secondary 11J86
DOI: https://doi.org/10.1090/S0002-9939-1995-1215203-4
MathSciNet review: 1215203
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let p be a prime with $ p > 3$. In this paper we prove that: (i) the equation $ {2^n} + p{x^2} = {y^p}$ has no positive integer solution (x, y, n) with $ \gcd (x,y) = 1$; (ii) if $ p \nequiv 7 \pmod 8$, then the equation has no positive integer solution (x, y, n).


References [Enhancements On Off] (What's this?)

  • [1] J. Brillhart, J. Tonascia, and P. Weinberger, On the Fermat quotient, Computers in Number Theory, Academic Press, New York, 1971, pp. 213-222. MR 0314736 (47:3288)
  • [2] R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley, Reading, MA, 1983. MR 746963 (86c:11106)
  • [3] W. Ljunggren, Über die Gleichungen $ 1 + D{x^2} = 2{y^n}$ und $ 1 + D{x^2} = 4{y^n}$, Norske Vid. Selsk. Forh., Trondhjem 15 (1942), 115-118. MR 0019646 (8:442g)
  • [4] M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method. III, Ann. Fac. Sci. Toulouse Math. (5) Special Issue 97 (1989), 43-75. MR 1425750 (98i:11055)
  • [5] T. Nagell, Sur l'impossibilité de quelques équations a deux indéterminées, Norsk Mat. Forenings Skrifter (1) 13 (1921), 65-82.
  • [6] -, Contributions to the theory of a category of diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Upsal. 16 (1955). MR 0070645 (17:13b)
  • [7] S. Rabinowitz, The solutions of $ 3{y^2} \pm {2^n} = {x^3}$, Proc. Amer. Math. Soc. 69 (1978), 213-218.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11D61, 11J86

Retrieve articles in all journals with MSC: 11D61, 11J86


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1215203-4
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society