On the Diophantine equation
Author:
Mao Hua Le
Journal:
Proc. Amer. Math. Soc. 123 (1995), 321-326
MSC:
Primary 11D61; Secondary 11J86
DOI:
https://doi.org/10.1090/S0002-9939-1995-1215203-4
MathSciNet review:
1215203
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let p be a prime with . In this paper we prove that: (i) the equation
has no positive integer solution (x, y, n) with
; (ii) if
, then the equation has no positive integer solution (x, y, n).
- [1] J. Brillhart, J. Tonascia, and P. Weinberger, On the Fermat quotient, Computers in Number Theory, Academic Press, New York, 1971, pp. 213-222. MR 0314736 (47:3288)
- [2] R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley, Reading, MA, 1983. MR 746963 (86c:11106)
- [3]
W. Ljunggren, Über die Gleichungen
und
, Norske Vid. Selsk. Forh., Trondhjem 15 (1942), 115-118. MR 0019646 (8:442g)
- [4] M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method. III, Ann. Fac. Sci. Toulouse Math. (5) Special Issue 97 (1989), 43-75. MR 1425750 (98i:11055)
- [5] T. Nagell, Sur l'impossibilité de quelques équations a deux indéterminées, Norsk Mat. Forenings Skrifter (1) 13 (1921), 65-82.
- [6] -, Contributions to the theory of a category of diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Upsal. 16 (1955). MR 0070645 (17:13b)
- [7]
S. Rabinowitz, The solutions of
, Proc. Amer. Math. Soc. 69 (1978), 213-218.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11D61, 11J86
Retrieve articles in all journals with MSC: 11D61, 11J86
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1995-1215203-4
Article copyright:
© Copyright 1995
American Mathematical Society