Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the Diophantine equation $ 2\sp n+px\sp 2=y\sp p$


Author: Mao Hua Le
Journal: Proc. Amer. Math. Soc. 123 (1995), 321-326
MSC: Primary 11D61; Secondary 11J86
DOI: https://doi.org/10.1090/S0002-9939-1995-1215203-4
MathSciNet review: 1215203
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let p be a prime with $ p > 3$. In this paper we prove that: (i) the equation $ {2^n} + p{x^2} = {y^p}$ has no positive integer solution (x, y, n) with $ \gcd (x,y) = 1$; (ii) if $ p \nequiv 7 \pmod 8$, then the equation has no positive integer solution (x, y, n).


References [Enhancements On Off] (What's this?)

  • [1] J. Brillhart, J. Tonascia, and P. Weinberger, On the Fermat quotient, Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969) Academic Press, London, 1971, pp. 213–222. MR 0314736
  • [2] Rudolf Lidl and Harald Niederreiter, Finite fields, Encyclopedia of Mathematics and its Applications, vol. 20, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983. With a foreword by P. M. Cohn. MR 746963
  • [3] Wilhelm Ljunggren, Über die Gleichungen 1+𝐷𝑥²=2𝑦ⁿ und 1+𝐷𝑥²=4𝑦ⁿ, Norske Vid. Selsk. Forh., Trondhjem 15 (1942), no. 30, 115–118 (German). MR 0019646
  • [4] Maurice Mignotte and Michel Waldschmidt, Linear forms in two logarithms and Schneider’s method. III, Ann. Fac. Sci. Toulouse Math. (5) suppl. (1989), 43–75 (English, with English and French summaries). MR 1425750
  • [5] T. Nagell, Sur l'impossibilité de quelques équations a deux indéterminées, Norsk Mat. Forenings Skrifter (1) 13 (1921), 65-82.
  • [6] Trygve Nagell, Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Upsal. (4) 16 (1955), no. 2, 38. MR 0070645
  • [7] S. Rabinowitz, The solutions of $ 3{y^2} \pm {2^n} = {x^3}$, Proc. Amer. Math. Soc. 69 (1978), 213-218.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11D61, 11J86

Retrieve articles in all journals with MSC: 11D61, 11J86


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1215203-4
Article copyright: © Copyright 1995 American Mathematical Society