On the approximation of fixed points for locally pseudo-contractive mappings

Authors:
Claudio H. Morales and Simba A. Mutangadura

Journal:
Proc. Amer. Math. Soc. **123** (1995), 417-423

MSC:
Primary 47H09; Secondary 47H06, 47H10, 47H17

DOI:
https://doi.org/10.1090/S0002-9939-1995-1216820-8

MathSciNet review:
1216820

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let *X* and its dual be uniformly convex Banach spaces, *D* an open and bounded subset of *X*, *T* a continuous and pseudo-contractive mapping defined on and taking values in *X*. If *T* satisfies the following condition: there exists such that for all *x* on the boundary of *D*, then the trajectory , defined by is continuous and converges strongly to a fixed point of *T* as .

**[1]**F. E. Browder,*Nonlinear mappings of nonexpansive and accretive type in Banach spaces*, Bull. Amer. Math. Soc.**73**(1967), 875-882. MR**0232255 (38:581)****[2]**-,*Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces*, Arch. Rational Mech. Anal.**24**(1967), 82-90. MR**0206765 (34:6582)****[3]**F. E. Browder and W. V. Petryshyn,*The solution by iteration of nonlinear functional equations in Banach spaces*, Bull. Amer. Math. Soc.**72**(1966), 571-575. MR**0190745 (32:8155b)****[4]**R. E. Bruck, W. A. Kirk, and S. Reich,*Strong and weak convergence theorems for locally nonexpansive mappings in Banach spaces*, Nonlinear Anal. TMA**6**(1982), 151-155. MR**651696 (83j:47040)****[5]**K. Deimling,*Zeros of accretive operators*, Manuscripta Math.**13**(1974), 365-374. MR**0350538 (50:3030)****[6]**T. Kato,*Nonlinear semigroups and evolution equations*, J. Math. Soc. Japan**19**(1967), 508-520. MR**0226230 (37:1820)****[7]**W. A. Kirk,*A fixed point theorem for local pseudo-contractions in uniformly convex spaces*, Manuscripta Math.**30**(1979), 89-102. MR**552364 (80k:47064)****[8]**W. A. Kirk and C. H. Morales,*On the approximation of fixed points of locally nonexpansive mappings*, Canad. Math. Bull.**24**(1981), 441-445. MR**644533 (83h:47040)****[9]**C. H. Morales,*Pseudo-contractive mappings and the Leray-Schauder boundary condition*, Comment. Math. Univ. Carolin.**20**(1979), 745-756. MR**555187 (80k:47067)****[10]**-,*On the fixed-point theory for local k-pseudocontractions*, Proc. Amer. Math. Soc.**81**(1981), 71-74. MR**589138 (82c:47072)****[11]**-,*Strong convergence theorems for pseudo-contractive mappings in Banach space*, Houston J. Math.**16**(1990), 549-557. MR**1097087 (92f:47063)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47H09,
47H06,
47H10,
47H17

Retrieve articles in all journals with MSC: 47H09, 47H06, 47H10, 47H17

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1216820-8

Keywords:
Pseudo-contractive mappings,
uniform convexity

Article copyright:
© Copyright 1995
American Mathematical Society