On the approximation of fixed points for locally pseudo-contractive mappings

Authors:
Claudio H. Morales and Simba A. Mutangadura

Journal:
Proc. Amer. Math. Soc. **123** (1995), 417-423

MSC:
Primary 47H09; Secondary 47H06, 47H10, 47H17

MathSciNet review:
1216820

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let *X* and its dual be uniformly convex Banach spaces, *D* an open and bounded subset of *X*, *T* a continuous and pseudo-contractive mapping defined on and taking values in *X*. If *T* satisfies the following condition: there exists such that for all *x* on the boundary of *D*, then the trajectory , defined by is continuous and converges strongly to a fixed point of *T* as .

**[1]**Felix E. Browder,*Nonlinear mappings of nonexpansive and accretive type in Banach spaces.*, Bull. Amer. Math. Soc.**73**(1967), 875–882. MR**0232255**, 10.1090/S0002-9904-1967-11823-8**[2]**Felix E. Browder,*Convergence of approximants to fixed points of nonexpansive non-linear mappings in Banach spaces*, Arch. Rational Mech. Anal.**24**(1967), 82–90. MR**0206765****[3]**F. E. Browder and W. V. Petryshyn,*The solution by iteration of nonlinear functional equations in Banach spaces*, Bull. Amer. Math. Soc.**72**(1966), 571–575. MR**0190745**, 10.1090/S0002-9904-1966-11544-6**[4]**R. E. Bruck, W. A. Kirk, and S. Reich,*Strong and weak convergence theorems for locally nonexpansive mappings in Banach spaces*, Nonlinear Anal.**6**(1982), no. 2, 151–155. MR**651696**, 10.1016/0362-546X(82)90083-9**[5]**Klaus Deimling,*Zeros of accretive operators*, Manuscripta Math.**13**(1974), 365–374. MR**0350538****[6]**Tosio Kato,*Nonlinear semigroups and evolution equations*, J. Math. Soc. Japan**19**(1967), 508–520. MR**0226230****[7]**W. A. Kirk,*A fixed point theorem for local pseudocontractions in uniformly convex spaces*, Manuscripta Math.**30**(1979/80), no. 1, 89–102. MR**552364**, 10.1007/BF01305991**[8]**W. A. Kirk and Claudio Morales,*On the approximation of fixed points of locally nonexpansive mappings*, Canad. Math. Bull.**24**(1981), no. 4, 441–445. MR**644533**, 10.4153/CMB-1981-067-0**[9]**C. Morales,*Pseudocontractive mappings and the Leray-Schauder boundary condition*, Comment. Math. Univ. Carolin.**20**(1979), no. 4, 745–756. MR**555187****[10]**Claudio Morales,*On the fixed-point theory for local 𝑘-pseudocontractions*, Proc. Amer. Math. Soc.**81**(1981), no. 1, 71–74. MR**589138**, 10.1090/S0002-9939-1981-0589138-4**[11]**Claudio H. Morales,*Strong convergence theorems for pseudo-contractive mappings in Banach space*, Houston J. Math.**16**(1990), no. 4, 549–557. MR**1097087**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47H09,
47H06,
47H10,
47H17

Retrieve articles in all journals with MSC: 47H09, 47H06, 47H10, 47H17

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1216820-8

Keywords:
Pseudo-contractive mappings,
uniform convexity

Article copyright:
© Copyright 1995
American Mathematical Society