Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Subseries convergence in spaces with a Schauder basis


Author: Charles Swartz
Journal: Proc. Amer. Math. Soc. 123 (1995), 455-457
MSC: Primary 46A35; Secondary 40J05
MathSciNet review: 1216826
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let E be a Hausdorff topological vector space having a Schauder basis $ \{ {b_i}\} $ and coordinate functionals $ \{ {f_i}\} $. Let $ \sigma (E,F)$ be the weak topology on E induced by $ F = \{ {f_i}:i \in {\mathbf{N}}\} $. We show that if a series in E is subseries convergent with respect to $ \sigma (E,F)$, then it is subseries convergent with respect to the original topology of E.


References [Enhancements On Off] (What's this?)

  • [A] Piotr Antosik, On interchange of limits, Generalized functions, convergence structures, and their applications (Dubrovnik, 1987) Plenum, New York, 1988, pp. 367–374. MR 975748, 10.1007/978-1-4613-1055-6_37
  • [AS] Piotr Antosik and Charles Swartz, Matrix methods in analysis, Lecture Notes in Mathematics, vol. 1113, Springer-Verlag, Berlin, 1985. MR 781343
  • [B] Bolis Basit, On a theorem of Gel′fand and a new proof of the Orlicz-Pettis theorem, Rend. Istit. Mat. Univ. Trieste 18 (1986), no. 2, 159–162 (English, with Italian summary). MR 928326
  • [K1] N. J. Kalton, The Orlicz-Pettis theorem, Proceedings of the Conference on Integration, Topology, and Geometry in Linear Spaces (Univ. North Carolina, Chapel Hill, N.C., 1979) Contemp. Math., vol. 2, Amer. Math. Soc., Providence, R.I., 1980, pp. 91–100. MR 621853
  • [K2] N. J. Kalton, Subseries convergence in topological groups and vector spaces, Israel J. Math. 10 (1971), 402–412. MR 0294558
  • [S] W. J. Stiles, On subseries convergence in 𝐹-spaces, Israel J. Math. 8 (1970), 53–56. MR 0262800
  • [Sw1] Charles Swartz, A generalization of Stiles’ Orlicz-Pettis theorem, Rend. Istit. Mat. Univ. Trieste 20 (1988), no. 1, 109–112 (1989) (English, with Italian summary). MR 1013101
  • [Sw2] Charles Swartz, Iterated series and the Hellinger-Toeplitz theorem, Publ. Mat. 36 (1992), no. 1, 167–173. MR 1179609, 10.5565/PUBLMAT_36192_12

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46A35, 40J05

Retrieve articles in all journals with MSC: 46A35, 40J05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1995-1216826-9
Article copyright: © Copyright 1995 American Mathematical Society