A product formula for minimal polynomials and degree bounds for inverses of polynomial automorphisms

Author:
Jie Tai Yu

Journal:
Proc. Amer. Math. Soc. **123** (1995), 343-349

MSC:
Primary 12E05; Secondary 12F05, 12Y05

DOI:
https://doi.org/10.1090/S0002-9939-1995-1216829-4

MathSciNet review:
1216829

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By means of Galois theory, we give a product formula for the minimal polynomial *G* of which contains *n* algebraically independent elements, where *K* is a field of characteristic zero. As an application of the product formula, we give a simple proof of Gabber's degree bound inequality for the inverse of a polynomial automorphism.

**[1]**S. S. Abhyankar,*Algebraic geometry for scientists and engineers*, Amer. Math. Soc., Providence, RI, 1990. MR**1075991 (92a:14001)****[2]**H. Bass, E. Connell, and D. Wright,*The Jacobian conjecture*:*reduction on degree and formal expansion of the inverse*, Bull. Amer. Math. Soc. (N.S.)**7**(1982), 287-330. MR**663785 (83k:14028)****[3]**W. Li and J.-T. Yu,*Computing minimal polynomials and the degree of unfaithfulness*, Comm. Algebra**21**(1993), 3557-3569. MR**1231617 (94h:13020)****[4]**-,*Reconstructing birational maps from their face functions*, Manuscripta Math.**76**(1992), 353-366. MR**1185025 (93j:14014)****[5]**J. MaKay and S. S.-S. Wang,*An inversion formula for two polynomials in two variables*, J. Pure Appl. Algebra**40**(1986), 245-257. MR**836651 (87j:12003)****[6]**D. Mumford,*Algebraic geometry*I.*Complex projective varieties*, Springer-Verlag, New York, 1976. MR**0453732 (56:11992)****[7]**P. Pederson and B. Sturmfels,*Product formulas for sparse resultants*, J. Algebra (to appear) (1993).**[8]**B. Sturmfels,*Sparse elimination theory*, Proceedings of Computational Algebraic Geometry and Commutative Algebra, Cortona, Italy, 1992. MR**1253995 (94k:13035)****[9]**B. Sturmfels and J.-T. Yu,*Minimal polynomials and sparse resultants*, Proceedings of the Zero Dimensional Conference (Ravello, Italy, June 8-13, 1992), Cortona, Italy, 1993. MR**1292495 (95g:12001)****[10]**S. S.-S. Wang,*A Jacobian criterion for separability*, J. Algebra**65**(1980), 453-494. MR**585736 (83e:14010)****[11]**J.-T. Yu,*Face polynomials and inversion formula*, J. Pure Appl. Algebra**78**(1992), 213-219. MR**1161345 (93b:13010)****[12]**-,*Computing minimal polynomials and the inverse via GCP*, Comm. Algebra**21**(1993), 2279-2294. MR**1218498 (94d:12002)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
12E05,
12F05,
12Y05

Retrieve articles in all journals with MSC: 12E05, 12F05, 12Y05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1216829-4

Keywords:
Minimal polynomials,
Galois theory,
product formula,
polynomial automorphisms

Article copyright:
© Copyright 1995
American Mathematical Society