Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Convergence of heat kernels for degenerating hyperbolic surfaces


Author: Lizhen Ji
Journal: Proc. Amer. Math. Soc. 123 (1995), 639-646
MSC: Primary 58G11; Secondary 58G25
DOI: https://doi.org/10.1090/S0002-9939-1995-1219726-3
MathSciNet review: 1219726
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a degenerating family of hyperbolic surfaces $ {S_l}(l \geq 0)$, we show that the heat kernel of $ {S_l}$ converges to the heat kernel of $ {S_0}$. The proof consists of two steps. For small time, we use the Brownian motion interpretation of the heat kernels to prove the convergence. Then we use Gaussian type bounds for the heat kernels and their derivatives and a priori bounds for heat equations to finish the proof.


References [Enhancements On Off] (What's this?)

  • [1] I. Chavel, Eigenvalues in Riemannian geometry, Academic Press, New York, 1984. MR 768584 (86g:58140)
  • [2] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, NJ, 1964. MR 0181836 (31:6062)
  • [3] D. Hejhal, Regular b-groups, degenerating Riemann surfaces and spectral theory, Mem. Amer. Math. Soc., vol. 88, Amer. Math. Soc., Providence, RI, 1990. MR 1052555 (92h:11043)
  • [4] L. Ji, Spectral degeneration for hyperbolic Riemann surfaces, J. Differential Geom. 38 (1993), 263-313. MR 1237486 (94j:58172)
  • [5] -, The asymptotic behavior of Green's functions for degenerating hyperbolic Riemann surfaces, Math. Z. 212 (1993), 375-394. MR 1207299 (94d:58152)
  • [6] J. Jorgenson and R. Lundelius, Convergence theorems for relative spectral functions on hyperbolic Riemann surfaces of finite volume, preprint, 1992. MR 1370116 (97f:58133)
  • [7] L. Keen, Collars on Riemann surfaces, Discontinuous Groups and Riemann Surfaces, Ann. of Math. Stud., no. 79, Princeton Univ. Press, Princeton, NJ, 1974, pp. 263-368. MR 0379833 (52:738)
  • [8] P. Li and S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153-201. MR 834612 (87f:58156)
  • [9] S. C. Port and C. J. Stone, Brownian motions and classical potential theory, Academic Press, New York, 1978. MR 0492329 (58:11459)
  • [10] D. Ray and I. M. Singer, R-torsion and the Laplacian on Riemannian manifolds, Adv. Math. 7 (1971), 145-210. MR 0295381 (45:4447)
  • [11] N. Th. Varopoulos, Small time Gaussian estimates of heat diffusion kernels, Part 1: The semigroup technique, Bull. Sci. Math. (2) 113 (1989), 253-277. MR 1016211 (90k:58216)
  • [12] M. Wolf, Infinite energy harmonic maps and degeneration of hyperbolic surfaces, J. Differential Geom. 33 (1991), 487-539. MR 1094467 (92b:58055)
  • [13] S. Wolpert, Spectral limits for hyperbolic surfaces. I, II, Invent. Math. 108 (1992), 67-89, 91-129. MR 1156387 (93b:58160)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G11, 58G25

Retrieve articles in all journals with MSC: 58G11, 58G25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1219726-3
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society