Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Uniform homeomorphisms between the unit balls in $ L\sb p$ and $ l\sb p$


Author: Gun-Marie Lövblom
Journal: Proc. Amer. Math. Soc. 123 (1995), 405-409
MSC: Primary 46B99; Secondary 46B25, 46E30
MathSciNet review: 1227523
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ T:B({L_p}) \to B({l_p}),1 \leq p < 2$, be a uniform homeomorphism with modulus of continuity $ {\delta _T}$. It is shown that for any $ \gamma ,0 \leq \gamma < \frac{{2 - p}}{{2p}}$, there exists $ K > 0$ and a sequence $ \{ {\varepsilon _n}\} $ with $ {\varepsilon _n} \to 0$ such that $ \delta _T^{ - 1}({\delta _T}({\varepsilon _n})) \geq K{\varepsilon _n}\vert\log {\varepsilon _n}{\vert^\gamma }$ for all $ {\varepsilon _n}$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B99, 46B25, 46E30

Retrieve articles in all journals with MSC: 46B99, 46B25, 46E30


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1995-1227523-8
PII: S 0002-9939(1995)1227523-8
Article copyright: © Copyright 1995 American Mathematical Society