Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Law of the iterated logarithm and invariance principle for $ M$-estimators


Authors: Xuming He and Gang Wang
Journal: Proc. Amer. Math. Soc. 123 (1995), 563-573
MSC: Primary 62F35; Secondary 60F15, 60F17
DOI: https://doi.org/10.1090/S0002-9939-1995-1231036-7
MathSciNet review: 1231036
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the law of the iterated logarithm for a general class of M-estimators which covers in particular robust M-estimators and S-estimators of multivariate location-scatter. We also obtain an almost sure invariance principle (Bahadur-type representation) for these estimators.


References [Enhancements On Off] (What's this?)

  • [1] N. H. Bingham, Variants on the law of the iterated logarithm, Bull. London Math. Soc. 18 (1986), 433-467. MR 847984 (87k:60087)
  • [2] D. D. Boos and R. J. Serfling, A note on differentials and the CLT and LIL for statistical functions, with applications to M-estimates, Ann. Statist. 8 (1980), 618-624. MR 568724 (81f:62038)
  • [3] R. J. Carroll, On almost sure expansions for M-estimates, Ann. Statist. 6 (1978), 314-318. MR 0464470 (57:4400)
  • [4] Y. S. Chow and T. Teicher, Probability theory: Independence, interchangeability, martingale, Springer-Verlag, New York, 1978. MR 513230 (80a:60004)
  • [5] D. M. Dabrowska, Kaplan-Meier estimate on the plane: Weak convergence, LIL, and the bootstrap, J. Multivariate Anal. 29 (1989), 308-325. MR 1004341 (90j:62023)
  • [6] P. L. Davies, Asymptotic behavior of S-estimates of multivariate location parameters and dispersion matrices, Ann. Statist. 14 (1987), 1269-1292. MR 902258 (88i:62095)
  • [7] H. Dehling, Complete convergence of triangular arrays and the law of the iterated logarithm for U-statistics, Stat. Probab. Lett. 7 (1989), 319-321. MR 980708 (90h:60028)
  • [8] D. Freedman, On tail probability for martingales, Ann. Probab. 3 (1975), 100-118. MR 0380971 (52:1868)
  • [9] F. A. Greybill, Matrices with application in statistics, 2nd ed., Wadsworth, Belmont, CA, 1983.
  • [10] P. Hall, Laws of the iterated logarithm for non-parametric density estimators, Z. Wahrsch. Verw. Gebiete 56 (1981), 47-61. MR 612159 (82e:60049)
  • [11] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, Robust statistics: The approach based on influence functions, Wiley, New York, 1986. MR 829458 (87k:62054)
  • [12] X. He and D. G. Simpson, Robust direction estimation, Ann. Statist. 20 (1992), 351-369. MR 1150348 (93d:62105)
  • [13] C. C. Heyde, An iterated logarithm result for martingales and its application in estimation theory for autoregressive processes, J. Appl. Probab. 10 (1973), 146-157. MR 0365962 (51:2214)
  • [14] P. J. Huber, The behavior of maximum likelihood estimates under nonstandard conditions, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, 1967, pp. 221-233. MR 0216620 (35:7449)
  • [15] -, Robust statistics, Wiley, New York, 1981. MR 606374 (82i:62057)
  • [16] H. K. Iverson and R. H. Randles, The effects on convergence of substituting parameter estimates into U-statistics and other families of statistics, Probab. Theory Related Fields 81 (1989), 453-471. MR 983092 (90f:62057)
  • [17] J. Jurečková and P. K. Sen, Invariance principles for some stochastic processes relating to M-estimators and their role in sequential statistical inference, Sankhyā Ser. A 43 (198)), 190-210. MR 666380 (84i:62111)
  • [18] J. Kiefer, Old and new methods for studying order statistics and sample quantiles, Proc. Conference on Nonparametric Techniques in Statistical Inference (M. L. Puri, ed.), Cambridge Univ. Press, New York, 1970, pp. 349-357. MR 0286228 (44:3442)
  • [19] H. P. Lopuhaä, On the relation between S-estimators and M-estimators of multivariate location and covariance, Ann. Statist. 17 (1989), 1662-1683. MR 1026304 (91g:62044)
  • [20] J. Marcinkiewicz and A. Zygmund, Sur les fonctions independantes, Fund. Math. 29 (1937), 60-90.
  • [21] R. A. Maronna, Robust M-estimators of multivariate location and scatter, Ann. Statist. 4 (1976), 51-67. MR 0388656 (52:9492)
  • [22] H. Robbins, Statistical methods related to the law of the iterated logarithm, Ann. Math. Statist. 41 (1970), 1397-1409. MR 0277063 (43:2800)
  • [23] P. R. Rousseeuw and V. Yohai, Robust regression by means of S-estimators, Robust and Nonlinear Time Series Analysis (J. Franke, W. Hardle, and R.D. Martin, eds.), Lecture Notes in Statistics, vol. 26, Springer-Verlag, New York, 1984, pp. 256-272. MR 786313 (87b:62041)
  • [24] P. K. Sen, Sequential nonparametrics: Invariance principle and statistical inference, Wiley, New York, 1981. MR 633884 (83c:62128)
  • [25] R. J. Serfling, Approximation theorems of mathematical statistics, Wiley, New York, 1980. MR 595165 (82a:62003)
  • [26] W. F. Stout, Almost sure convergence, Academic Press, New York, 1974. MR 0455094 (56:13334)
  • [27] V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahrsch. Verw. Gebiete 3 (1964), 211-226. MR 0175194 (30:5379)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 62F35, 60F15, 60F17

Retrieve articles in all journals with MSC: 62F35, 60F15, 60F17


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1231036-7
Keywords: Bahadur representation, invariance principle, law of the iterated logarithm, location-scatter, M-estimator, robustness, S-estimator
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society