On a conjecture of Révész

Author:
Qi Man Shao

Journal:
Proc. Amer. Math. Soc. **123** (1995), 575-582

MSC:
Primary 60F15; Secondary 60G17

DOI:
https://doi.org/10.1090/S0002-9939-1995-1231304-9

MathSciNet review:
1231304

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be i.i.d. random variables with . Révész (1990) proved

**[1]**Herman Chernoff,*A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations*, Ann. Math. Statistics**23**(1952), 493–507. MR**0057518****[2]**M. Csörgő and P. Révész,*Strong approximations in probability and statistics*, Probability and Mathematical Statistics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**666546****[3]**D. A. Darling and P. Erdös,*A limit theorem for the maximum of normalized sums of independent random variables*, Duke Math. J.**23**(1956), 143–155. MR**0074712****[4]**Paul Erdős and Alfréd Rényi,*On a new law of large numbers*, J. Analyse Math.**23**(1970), 103–111. MR**0272026**, https://doi.org/10.1007/BF02795493**[5]**D. L. Hanson and Ralph P. Russo,*Some results on increments of the Wiener process with applications to lag sums of i.i.d. random variables*, Ann. Probab.**11**(1983), no. 3, 609–623. MR**704547****[6]**D. L. Hanson and Ralph P. Russo,*Some limit results for lag sums of independent, non-i.i.d., random variables*, Z. Wahrsch. Verw. Gebiete**68**(1985), no. 4, 425–445. MR**772191**, https://doi.org/10.1007/BF00535337**[7]**J. Komlós, P. Major, and G. Tusnády,*An approximation of partial sums of independent 𝑅𝑉’s and the sample 𝐷𝐹. I*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**32**(1975), 111–131. MR**0375412**, https://doi.org/10.1007/BF00533093**[8]**P. Révész,*Random walk in random and non-random environments*, World Scientific, Singapore, 1990.**[9]**Q. M. Shao,*Limit theorems for sums of dependent and independent random variables*, Ph.D. Dissertation, Univ. of Science and Technology of China, Hefei, People's Republic of China, 1989.**[10]**Qi Man Shao,*Random increments of a Wiener process and their applications*, Studia Sci. Math. Hungar.**29**(1994), no. 3-4, 443–480. MR**1304897****[11]**Qi Man Shao,*Strong approximation theorems for independent random variables and their applications*, J. Multivariate Anal.**52**(1995), no. 1, 107–130. MR**1325373**, https://doi.org/10.1006/jmva.1995.1006

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
60F15,
60G17

Retrieve articles in all journals with MSC: 60F15, 60G17

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1231304-9

Keywords:
Increments,
partial sums,
a.s. convergence,
random walk

Article copyright:
© Copyright 1995
American Mathematical Society