Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a conjecture of Révész


Author: Qi Man Shao
Journal: Proc. Amer. Math. Soc. 123 (1995), 575-582
MSC: Primary 60F15; Secondary 60G17
DOI: https://doi.org/10.1090/S0002-9939-1995-1231304-9
MathSciNet review: 1231304
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \{ {X_n},n \geq 1\} $ be i.i.d. random variables with $ P({X_i} = \pm 1) = \frac{1}{2}$. Révész (1990) proved

\begin{displaymath}\begin{array}{*{20}{c}} {1 \le \mathop {\lim \inf }\limits_{n... ...- {S_j}) \le K\quad {\rm {a}}.{\rm {s}}.} \hfill \\ \end{array}\end{displaymath}

and conjectured $ K = 1$, where $ {S_n} = \sum\nolimits_{i = 1}^n {{X_i}} $. In this we show that Révész's conjecture is true but the conclusion is not valid for general i.i.d. random variables with finite moment generating function.

References [Enhancements On Off] (What's this?)

  • [1] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on sums of observations, Ann. Math. Statist. 23 (1952), 493-507. MR 0057518 (15:241c)
  • [2] M. Csörgő and P. Révész, Strong approximations in probability and statistics, Academic Press, New York, 1981. MR 666546 (84d:60050)
  • [3] D. Darling and P. Erdős, A limit theorem for the maximum of normalized sums of independent random variables, Duke Math. J. 23 (1956), 143-155. MR 0074712 (17:635c)
  • [4] P. Erdős and P. Rényi, On a new law of large numbers, J. Analyse Math. 23 (1970), 103-111. MR 0272026 (42:6907)
  • [5] D. L. Hanson and P. Russo, Some results on increments of the Wiener process with applications to lag sums of i.i.d. random variables, Ann. Probab. 11 (1983), 609-623. MR 704547 (85c:60127)
  • [6] -, Some limit results for lag sums of independent non-i.i.d. random variables, Z. Wahrsch. Verw. Gebiete 68 (1985), 425-445. MR 772191 (86c:60043)
  • [7] J. Komlós, P. Major, and G. Tusnády, An approximation of partial sums of independent R.V.'s and the sample DF. I, Z. Wahrsch. Verw. Gebiete 32 (1975), 111-131. MR 0375412 (51:11605b)
  • [8] P. Révész, Random walk in random and non-random environments, World Scientific, Singapore, 1990.
  • [9] Q. M. Shao, Limit theorems for sums of dependent and independent random variables, Ph.D. Dissertation, Univ. of Science and Technology of China, Hefei, People's Republic of China, 1989.
  • [10] -, Random increments of a Wiener process and their applications, Tech. Rep., Ser. Lab. Res. Stat. Probab. No. 184, Carleton University, University of Ottawa, Canada, 1991; Studia Sci. Math. Hungar. (to appear). MR 1304897 (95m:60058)
  • [11] -, Strong approximation theorems for independent random variables and their applications, Tech. Rep., Ser. Lab. Res. Stat. Probab. No. 184, Carleton University, University of Ottawa, Canada, 1991; J. Multivariate Anal, (to appear). MR 1325373 (96c:60047)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60F15, 60G17

Retrieve articles in all journals with MSC: 60F15, 60G17


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1231304-9
Keywords: Increments, partial sums, a.s. convergence, random walk
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society