On a conjecture of Révész

Author:
Qi Man Shao

Journal:
Proc. Amer. Math. Soc. **123** (1995), 575-582

MSC:
Primary 60F15; Secondary 60G17

DOI:
https://doi.org/10.1090/S0002-9939-1995-1231304-9

MathSciNet review:
1231304

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be i.i.d. random variables with . Révész (1990) proved

**[1]**H. Chernoff,*A measure of asymptotic efficiency for tests of a hypothesis based on sums of observations*, Ann. Math. Statist.**23**(1952), 493-507. MR**0057518 (15:241c)****[2]**M. Csörgő and P. Révész,*Strong approximations in probability and statistics*, Academic Press, New York, 1981. MR**666546 (84d:60050)****[3]**D. Darling and P. Erdős,*A limit theorem for the maximum of normalized sums of independent random variables*, Duke Math. J.**23**(1956), 143-155. MR**0074712 (17:635c)****[4]**P. Erdős and P. Rényi,*On a new law of large numbers*, J. Analyse Math.**23**(1970), 103-111. MR**0272026 (42:6907)****[5]**D. L. Hanson and P. Russo,*Some results on increments of the Wiener process with applications to lag sums of i.i.d. random variables*, Ann. Probab.**11**(1983), 609-623. MR**704547 (85c:60127)****[6]**-,*Some limit results for lag sums of independent non-i.i.d. random variables*, Z. Wahrsch. Verw. Gebiete**68**(1985), 425-445. MR**772191 (86c:60043)****[7]**J. Komlós, P. Major, and G. Tusnády,*An approximation of partial sums of independent R.V.'s and the sample DF*. I, Z. Wahrsch. Verw. Gebiete**32**(1975), 111-131. MR**0375412 (51:11605b)****[8]**P. Révész,*Random walk in random and non-random environments*, World Scientific, Singapore, 1990.**[9]**Q. M. Shao,*Limit theorems for sums of dependent and independent random variables*, Ph.D. Dissertation, Univ. of Science and Technology of China, Hefei, People's Republic of China, 1989.**[10]**-,*Random increments of a Wiener process and their applications*, Tech. Rep., Ser. Lab. Res. Stat. Probab. No. 184, Carleton University, University of Ottawa, Canada, 1991; Studia Sci. Math. Hungar. (to appear). MR**1304897 (95m:60058)****[11]**-,*Strong approximation theorems for independent random variables and their applications*, Tech. Rep., Ser. Lab. Res. Stat. Probab. No. 184, Carleton University, University of Ottawa, Canada, 1991; J. Multivariate Anal, (to appear). MR**1325373 (96c:60047)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
60F15,
60G17

Retrieve articles in all journals with MSC: 60F15, 60G17

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1231304-9

Keywords:
Increments,
partial sums,
a.s. convergence,
random walk

Article copyright:
© Copyright 1995
American Mathematical Society