An upper bound of for primitive sequences

Author:
David A. Clark

Journal:
Proc. Amer. Math. Soc. **123** (1995), 363-365

MSC:
Primary 11B83

DOI:
https://doi.org/10.1090/S0002-9939-1995-1243164-0

MathSciNet review:
1243164

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A sequence of positive integers is called primitive if no term of the sequence divides any other. Erdös conjectures that, for any primitive sequence *A*,

*n*. We show that

**[1]**P. Erdös and Z. Zhang,*Upper bound of**for primitive sequences*, Proc. Amer. Math. Soc.**117**(1993), 891-895.**[2]**J. Barkley Rosser and Lowell Schoenfeld,*Approximate formulas for some functions of prime numbers*, Illinois J. Math.**6**(1962), 64–94. MR**0137689**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
11B83

Retrieve articles in all journals with MSC: 11B83

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1243164-0

Article copyright:
© Copyright 1995
American Mathematical Society