Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hit polynomials and the canonical antiautomorphism of the Steenrod algebra


Author: Judith H. Silverman
Journal: Proc. Amer. Math. Soc. 123 (1995), 627-637
MSC: Primary 55S10; Secondary 20J05, 55R40
DOI: https://doi.org/10.1090/S0002-9939-1995-1254854-8
MathSciNet review: 1254854
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we generalize a formula of Davis (Proc. Amer. Math. Soc. 44 (1974), 235-236) for the antiautomorphism of the $ \bmod$-$ 2$ Steenrod algebra $ \mathcal{A}(2)$, in the process formulating the analogue of the Adem relations for products $ Sq(\overbrace {0, \ldots ,0}^{t - 1},a) \cdot Sq(\overbrace {0, \ldots ,0}^{t - 1},b)$. We also state a generalization of a conjecture by the author and Singer (On the action of Steenrod squares on polynomial algebras II, J. Pure Appl. Algebra (to appear)) concerning the $ \mathcal{A}(2)$-action on $ {\mathbb{F}_2}[{x_1}, \ldots ,{x_s}]$ and use the antiautomorphism formula to prove several cases of the generalized conjecture. We discuss the relationship between the two conjectures and make explicit a sufficient condition for Monks's work to prove a special case of the original conjecture. Finally, we illustrate in a table the relative strengths of the special cases of the conjectures known to be true.


References [Enhancements On Off] (What's this?)

  • [AM74] J. F. Adams and H. R. Margolis, Sub-Hopf-algebras of the Steenrod algebra, Proc. Amer. Math. Soc. 76 (1974), 45-52. MR 0341487 (49:6238)
  • [BM82] S. R. Bullett and I. G. Macdonald, On the Adem relations, Topology 21 (1982), 329-332. MR 649764 (83h:55035)
  • [Dav74] D. Davis, The antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 44 (1974), 235-236. MR 0328934 (48:7276)
  • [Gal79] A. Gallant, Excess and conjugation in the Steenrod algebra, Proc. Amer. Math. Soc. 76 (1979), 161-166. MR 534410 (81a:55029)
  • [Kra71] D. Kraines, On excess in the Milnor basis, Bull. London Math. Soc. 3 (1971), 363-365. MR 0300271 (45:9317)
  • [Luc78] E. Lucas, Théorie des functions numériques simplement periodiques, Amer. J. Math. 1 (1878), 184-240, 289-321. MR 1505176
  • [Mil58] J. Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150-171. MR 0099653 (20:6092)
  • [Mon] K. G. Monks, Polynomial modules over the Steenrod algebra and conjugation in the Milnor basis, Proc. Amer. Math. Soc. (to appear). MR 1207540 (95a:55042)
  • [Sil] J. H. Silverman, Conjugation and excess in the Steenrod algebra, Proc. Amer. Math. Soc. 119 (1993), 657-661. MR 1152292 (93k:55020)
  • [SS] J. H. Silverman and W. Singer, On the action of Steenrod squares on polynomial algebras II, J. Pure Appl. Algebra (to appear).
  • [Woo89] R. M. W. Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc. 105 (1989), 307-309. MR 974986 (90a:55030)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55S10, 20J05, 55R40

Retrieve articles in all journals with MSC: 55S10, 20J05, 55R40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1254854-8
Keywords: Steenrod algebra, antiautomorphism, hit polynomials
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society