Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A duality proof of a theorem of P. Hill


Author: Randall R. Holmes
Journal: Proc. Amer. Math. Soc. 123 (1995), 351-353
MSC: Primary 20K01; Secondary 20K30, 20K40
DOI: https://doi.org/10.1090/S0002-9939-1995-1273497-3
MathSciNet review: 1273497
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A duality argument is given to prove the equivalence of a recent theorem of P. Hill and the main step in Zippin's proof of Ulm's theorem.


References [Enhancements On Off] (What's this?)

  • [1] P. Hill, An isomorphism theorem for group pairs of finite abelian groups, Publ. Math. Debrecen 43/3-4 (1993), 343-349. MR 1269962 (95a:20056)
  • [2] I. Kaplansky, Infinite Abelian groups, Univ. of Michigan Press, Ann Arbor, MI, 1954. MR 0065561 (16:444g)
  • [3] L. Zippin, Countable torsion groups, Ann. of Math. 36 (1935), 86-99. MR 1503210

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20K01, 20K30, 20K40

Retrieve articles in all journals with MSC: 20K01, 20K30, 20K40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1273497-3
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society