Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Cycles in $ C\sp r$-twists


Author: C. R. Carroll
Journal: Proc. Amer. Math. Soc. 123 (1995), 927-934
MSC: Primary 58F03; Secondary 58F11
DOI: https://doi.org/10.1090/S0002-9939-1995-1219722-6
MathSciNet review: 1219722
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {f_t},0 \leq t \leq 1$, be a continuous one-parameter family of $ {C^r}$ diffeomorphisms of the circle obtained by monotonically twisting away from $ {f_0}$. It is well known that for a dense set of parameter values $ {t, f_t}$ has a periodic orbit. To what extent does the distribution in the circle of these periodic orbits reflect the degree of differentiability r? We show that if $ r \geq 6,{\sup _t}{\left\Vert {{f_t} \circ f_0^{ - 1}} \right\Vert _{{C^r}}} < \infty $, and the rotation number of $ {f_0}$ is an irrational $ \alpha $ with bounded continued fraction expansion, then periodic orbits corresponding to small values of the parameter t echo the metric structure of $ {f_0}$ in the following sense: If the rotation number of the orbit is a convergent of $ \alpha $, then the orbit divides the circle into intervals of nearly equal $ \mu $-measure, where $ \mu $ is the invariant Borel probability measure of $ {f_0}$. The corresponding result for low differentiability is false.


References [Enhancements On Off] (What's this?)

  • [1] C. Carroll, The $ {\mathcal{C}^r}$ -closing problem for flows of $ {{\mathbf{T}}^2}$, Ph.D. Thesis, U. C. Berkeley, 1990.
  • [2] -, Rokhlin towers and $ {\mathcal{C}^r}$ -closing for flows on $ {{\mathbf{T}}^2}$, Ergodic Theory Dynamical Systems 12 (1992), 683-706. MR 1200337 (94c:58177)
  • [3] C. Gutierrez, On the $ {\mathcal{C}^r}$ -closing lemma for flows on the torus $ {{\mathbf{T}}^2}$, Ergodic Theory Dynamical Systems 6 (1986), 44-56. MR 837975 (87h:58193)
  • [4] G. Hardy and E. Wright, Introduction to the theory of numbers, 5th ed., Clarendon Press, Oxford, 1979. MR 568909 (81i:10002)
  • [5] Y. Katznelson and D. Ornstein, The differentiability of the conjugation of certain diffeomorphisms of the circle, Ergodic Theory Dynamical Systems 9 (1989), 643-680. MR 1036902 (91i:58121)
  • [6] A. N. Kolmogorov, On inequalities for suprema of consecutive derivatives of an arbitrary function on an infinite interval, Uchen. Zap. MGU 30 (1939), 3-16.
  • [7] C. Pugh, Against the $ {\mathcal{C}^2}$ closing lemma, J. Differential Equations 17 (1973), 435-443. MR 0368079 (51:4321)
  • [8] C. Pugh and C. Robinson, The $ {\mathcal{C}^1}$ -closing lemma, including Hamiltonians, Ergodic Theory Dynamical Systems 3 (1983), 261-313. MR 742228 (85m:58106)
  • [9] J. C. Yoccoz, Conjugaison differentiable des diffeomorphismes du cercle dont le nombre de rotation vérifie une condition Diophantienne, Ann. Sci. École Norm. Sup. (4) 17 (1984), 333-361. MR 777374 (86j:58086)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58F03, 58F11

Retrieve articles in all journals with MSC: 58F03, 58F11


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1219722-6
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society