Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Application of the operator phase shift in the $ L$-problem of moments


Author: Luminiţa Lemnete
Journal: Proc. Amer. Math. Soc. 123 (1995), 747-754
MSC: Primary 47A57
DOI: https://doi.org/10.1090/S0002-9939-1995-1223267-7
MathSciNet review: 1223267
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This note studies more deeply the results obtained in an earlier paper of the author (An operator-valued moment problem, Proc. Amer. Math. Soc. 112 (1991)). It gives a similar condition for the solvability of the L-problem of moments, using the operator phase shift. Based on this, it underlines some of the aspects of the operator phase shift used in the L-problem of moments.


References [Enhancements On Off] (What's this?)

  • [1] N. I. Ahiezer and M. G. Krein, Some questions in the theory of moments, Transl. Math. Monographs, vol. 2, Amer. Math. Soc., Providence, RI, 1962. MR 0167806 (29:5073)
  • [2] R. W. Carey, A unitary invariant for pairs of self-adjoint operators, J. Reine Angew. Math. 283 (1976), 294-312. MR 0415366 (54:3454)
  • [3] M. Putinar, A L-problem of moments in two dimensions, preprint series, 1988. MR 1081646 (91m:47018)
  • [4] D. Sarason, Moment problems and operators in Hilbert space, Proc. Sympos. Appl. Math., vol. 37, Amer. Math. Soc., Providence, RI, 1987. MR 921084 (89g:47008)
  • [5] F. H. Vasilescu, Introducere in teoria operatorilor liniari, Editura Tehnica, 1987.
  • [6] M. S. Brodskii, Triangular and Jordan representations of linear operators, Amer. Math. Soc., Providence, RI, 1962. MR 0322542 (48:904)
  • [7] L. Lemnete, An operator-valued moment problem, Proc. Amer. Math. Soc. 112 (1991), 1023-1028. MR 1059628 (91j:47013)
  • [8] M. Putinar, Inverse problems of perturbation theory and moment problems, Functional Analysis and Related Topics (S. Koshi, ed.), World Scientific, Singapore, 1991, pp. 99-116. MR 1148610 (92m:47031)
  • [9] Palle E. T. Jorgensen, Existence of smooth solutions to the classical moment problems, Trans. Amer. Math. Soc. 332 (1992), 839-848. MR 1059709 (92j:44005)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A57

Retrieve articles in all journals with MSC: 47A57


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1223267-7
Keywords: L-problem of moments, phase shift, operator, spectral measure, operatorial matrix
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society