A note on the Dirichlet problem for the Stokes system in Lipschitz domains

Author:
Zhong Wei Shen

Journal:
Proc. Amer. Math. Soc. **123** (1995), 801-811

MSC:
Primary 35Q30; Secondary 76D07

DOI:
https://doi.org/10.1090/S0002-9939-1995-1223521-9

MathSciNet review:
1223521

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Dirichlet problem for the Stokes system in Lipschitz domains. Optimal estimates are obtained when the dimension . In the case of , we establish a weak estimate of solutions for certain range of *p*.

**[DK1]**B. Dahlberg and C. Kenig,*Hardy spaces and the Neumann problem in**for Laplace's equation in Lipschitz domains*, Ann. of Math. (2)**125**(1987), 437-465. MR**890159 (88d:35044)****[BK2]**-,*estimates for the three-dimension system of elastostatics on Lipschitz domains*, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990.**[DKPV]**B. Dahlberg, C. Kenig, J. Pipher, and G. Verchota,*Area integral estimates and maximum principles for higher order elliptic equations and systems on Lipschitz domains*, preprint.**[DKV]**B. Dahlberg, C. Kenig, and G. Verchota,*Boundary value problems for the systems of elastostatics in Lipschitz domains*, Duke Math. J.**57**(1988), 795-818. MR**975122 (90d:35259)****[F]**E. Fabes,*Layer potential methods for boundary value problems on Lipschitz domains*, Lecture Notes in Math., vol. 1344, Springer-Verlag, New York, 1987, pp. 55-80. MR**973881****[FKV]**E. Fabes, C. Kenig, and G. Verchota,*The Dirichlet problem for the Stokes system on Lipschitz domains*, Duke Math. J.**57**(1988), 769-793. MR**975121 (90d:35258)****[GM]**M. Giaquinta and G. Modica,*Nonlinear systems of the type of the stationary Navier-Stokes system*, J. Reine Angew. Math.**330**(1982), 173-214. MR**641818 (83h:35041)****[JK]**D. Jerison and C. Kenig,*The inhomogeneous Dirichlet problem in Lipschitz domains*, preprint. MR**1331981 (96b:35042)****[MP]**V. G. Maz'ya and V. A. Plamenvskii,*On properties of solutions of three-dimensional problems of elasticity theory and hydrodynamics in domains with isolated singular points*, Amer. Math. Soc. Transl. Ser. 2, vol. 123, Amer. Math. Soc., Providence, RI, 1984, pp. 109-123.**[PV]**J. Pipher and G. Verchota,*The Dirichlet problem in**for biharmonic functions on Lipschitz domains*, Amer. J. Math.**114**(1992), 923-972. MR**1183527 (94g:35069)****[S]**E. Stein,*Singular integrals and differentiability properties of functions*, Princeton Univ. Press, Princeton, NJ, 1970. MR**0290095 (44:7280)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35Q30,
76D07

Retrieve articles in all journals with MSC: 35Q30, 76D07

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1223521-9

Article copyright:
© Copyright 1995
American Mathematical Society