Base-invariance implies Benford's law

Author:
Theodore P. Hill

Journal:
Proc. Amer. Math. Soc. **123** (1995), 887-895

MSC:
Primary 60A10; Secondary 28D05

DOI:
https://doi.org/10.1090/S0002-9939-1995-1233974-8

MathSciNet review:
1233974

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A derivation of Benford's Law or the First-Digit Phenomenon is given assuming only base-invariance of the underlying law. The only base-invariant distributions are shown to be convex combinations of two extremal probabilities, one corresponding to point mass and the other a log-Lebesgue measure. The main tools in the proof are identification of an appropriate mantissa -algebra on the positive reals, and results for invariant measures on the circle.

**[1]**F. Benford,*The law of anomalous numbers*, Proc. Amer. Philos. Soc.**78**(1938), 551-572.**[2]**D. Cohen,*An explanation of the first digit phenomenon*, J. Combin. Theory Ser. A**20**(1976), 367-370. MR**0406912 (53:10698)****[3]**R. Durrett,*Probability*:*Theory and examples*, Wadsworth, Belmont, 1991. MR**1068527 (91m:60002)****[4]**W. Feller,*An introduction to probability theory and its applications*, Vol. 2, 3rd edition, Wiley, New York, 1968. MR**0228020 (37:3604)****[5]**B. Flehinger,*On the probability that a random number has initial digit A*, Amer. Math. Monthly**73**(1966), 1056-1061. MR**0204395 (34:4237)****[6]**S. Newcomb,*Note on the frequency of use of the different digits in natural numbers*, Amer. J. Math.**4**(1881), 39-40. MR**1505286****[7]**R. Pinkham,*On the distribution of the first significant digits*, Ann. Math. Statist.**32**(1961), 1223-1230. MR**0131303 (24:A1155)****[8]**R. Raimi,*The peculiar distribution of first significant digits*, Sci. Amer.**221**(1969), 109-120.**[9]**-,*The first digit problem*, Amer. Math. Monthly**83**(1976), 521-538. MR**0410850 (53:14593)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
60A10,
28D05

Retrieve articles in all journals with MSC: 60A10, 28D05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1233974-8

Keywords:
First-digit problem,
base-invariance,
scale-invariance,
Benford's Law,
invariant measure,
*n*th digit law

Article copyright:
© Copyright 1995
American Mathematical Society