Asymptotic behaviour of firmly nonexpansive sequences

Author:
Behzad Djafari Rouhani

Journal:
Proc. Amer. Math. Soc. **123** (1995), 771-777

MSC:
Primary 47H09; Secondary 46B15

DOI:
https://doi.org/10.1090/S0002-9939-1995-1234631-4

MathSciNet review:
1234631

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce the notion of firmly nonexpansive sequences in a Banach space and present several results concerning their asymptotic behaviour extending previous results and giving an affirmative answer to an open question raised by S. Reich and I. Shafrir [Proc. Amer. Math. Soc. **101** (1987), 246-250]. Applications to averaged mappings are also given.

**[1]**J. B. Baillon, R. E. Bruck, and S. Reich,*On the asymptotic behaviour of nonexpansive mappings and semigroups in Banach spaces*, Houston J. Math.**4**(1978), 1-9. MR**0473932 (57:13590)****[2]**F. E. Browder,*Convergence theorems for sequences of nonlinear operators in Banach spaces*, Math. Z.**100**(1967), 201-225. MR**0215141 (35:5984)****[3]**R. E. Bruck,*Nonexpansive projections on subsets of Banach spaces*, Pacific J. Math.**47**(1973), 341-355. MR**0341223 (49:5973)****[4]**R. E. Bruck and S. Reich,*Nonexpansive projections and resolvents of accretive operators in Banach spaces*, Houston J. Math.**3**(1977), 459-470. MR**0470761 (57:10507)****[5]**B. Djafari Rouhani,*Asymptotic behaviour of quasi-autonomous dissipative systems in Hilbert spaces*, J. Math. Anal. Appl.**147**(1990), 465-476. MR**1050218 (91h:47069)****[6]**-,*Asymptotic behaviour of almost nonexpansive sequences in a Hilbert space*, J. Math. Anal. Appl.**151**(1990), 226-235. MR**1069458 (92a:47065)****[7]**-,*A simple proof to an extension of a theorem of A. Pazy in Hilbert space*, preprint, ICTP, Trieste, No. IC/90/219, 1990.**[8]**-,*Asymptotic behaviour of unbounded nonexpansive sequences in Banach spaces*, Proc. Amer. Math. Soc.**117**(1993), 951-956. MR**1120510 (93e:47073)****[9]**K. Fan and I. Glicksberg,*Some geometric properties of the spheres in a normed linear space*, Duke Math J.**25**(1958), 553-568. MR**0098976 (20:5421)****[10]**K. Goebel and W. A. Kirk,*Topics in metric fixed point theory*, Cambridge Stud. in Adv. Math., vol. 28, Cambridge, New York, Melbourne, and Sydney, 1990. MR**1074005 (92c:47070)****[11]**K. Goebel and S. Reich,*Uniform convexity, hyperbolic geometry and nonexpansive mappings*, Dekker, New York and Basel, 1984. MR**744194 (86d:58012)****[12]**S. Ishikawa,*Fixed points and iteration of a nonexpansive mapping in a Banach space*, Proc. Amer. Math. Soc.**59**(1976), 65-71. MR**0412909 (54:1030)****[13]**E. Kohlberg and A. Neyman,*Asymptotic behaviour of nonexpansive mappings in normed linear spaces*, Israel J. Math.**38**(1981), 269-275. MR**617673 (83g:47056)****[14]**A. T. Plant and S. Reich,*The asymptotics of nonexpansive iterations*, J. Funct. Anal.**54**(1983), 308-319. MR**724526 (85a:47055)****[15]**S. Reich,*On the asymptotic behaviour of nonlinear semigroups and the range of accretive operators*, I, II, Mathematics Research Center Report**2198**(1981); J. Math. Anal. Appl.**79**(1981), 113-126;**87**(1982), 134-146. MR**603380 (82c:47066)****[16]**S. Reich and I. Shafrir,*The asymptotic behaviour of firmly nonexpansive mappings*, Proc. Amer. Math. Soc.**101**(1987), 246-250. MR**902536 (88i:47030)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47H09,
46B15

Retrieve articles in all journals with MSC: 47H09, 46B15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1234631-4

Article copyright:
© Copyright 1995
American Mathematical Society