Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Asymptotic behaviour of firmly nonexpansive sequences


Author: Behzad Djafari Rouhani
Journal: Proc. Amer. Math. Soc. 123 (1995), 771-777
MSC: Primary 47H09; Secondary 46B15
DOI: https://doi.org/10.1090/S0002-9939-1995-1234631-4
MathSciNet review: 1234631
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce the notion of firmly nonexpansive sequences in a Banach space and present several results concerning their asymptotic behaviour extending previous results and giving an affirmative answer to an open question raised by S. Reich and I. Shafrir [Proc. Amer. Math. Soc. 101 (1987), 246-250]. Applications to averaged mappings are also given.


References [Enhancements On Off] (What's this?)

  • [1] J. B. Baillon, R. E. Bruck, and S. Reich, On the asymptotic behaviour of nonexpansive mappings and semigroups in Banach spaces, Houston J. Math. 4 (1978), 1-9. MR 0473932 (57:13590)
  • [2] F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201-225. MR 0215141 (35:5984)
  • [3] R. E. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math. 47 (1973), 341-355. MR 0341223 (49:5973)
  • [4] R. E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math. 3 (1977), 459-470. MR 0470761 (57:10507)
  • [5] B. Djafari Rouhani, Asymptotic behaviour of quasi-autonomous dissipative systems in Hilbert spaces, J. Math. Anal. Appl. 147 (1990), 465-476. MR 1050218 (91h:47069)
  • [6] -, Asymptotic behaviour of almost nonexpansive sequences in a Hilbert space, J. Math. Anal. Appl. 151 (1990), 226-235. MR 1069458 (92a:47065)
  • [7] -, A simple proof to an extension of a theorem of A. Pazy in Hilbert space, preprint, ICTP, Trieste, No. IC/90/219, 1990.
  • [8] -, Asymptotic behaviour of unbounded nonexpansive sequences in Banach spaces, Proc. Amer. Math. Soc. 117 (1993), 951-956. MR 1120510 (93e:47073)
  • [9] K. Fan and I. Glicksberg, Some geometric properties of the spheres in a normed linear space, Duke Math J. 25 (1958), 553-568. MR 0098976 (20:5421)
  • [10] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Stud. in Adv. Math., vol. 28, Cambridge, New York, Melbourne, and Sydney, 1990. MR 1074005 (92c:47070)
  • [11] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry and nonexpansive mappings, Dekker, New York and Basel, 1984. MR 744194 (86d:58012)
  • [12] S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1976), 65-71. MR 0412909 (54:1030)
  • [13] E. Kohlberg and A. Neyman, Asymptotic behaviour of nonexpansive mappings in normed linear spaces, Israel J. Math. 38 (1981), 269-275. MR 617673 (83g:47056)
  • [14] A. T. Plant and S. Reich, The asymptotics of nonexpansive iterations, J. Funct. Anal. 54 (1983), 308-319. MR 724526 (85a:47055)
  • [15] S. Reich, On the asymptotic behaviour of nonlinear semigroups and the range of accretive operators, I, II, Mathematics Research Center Report 2198 (1981); J. Math. Anal. Appl. 79 (1981), 113-126; 87 (1982), 134-146. MR 603380 (82c:47066)
  • [16] S. Reich and I. Shafrir, The asymptotic behaviour of firmly nonexpansive mappings, Proc. Amer. Math. Soc. 101 (1987), 246-250. MR 902536 (88i:47030)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H09, 46B15

Retrieve articles in all journals with MSC: 47H09, 46B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1234631-4
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society