Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Kähler Moišezon spaces which are projective algebraic


Author: Charles Vuono
Journal: Proc. Amer. Math. Soc. 123 (1995), 779-783
MSC: Primary 32J20; Secondary 14B05, 32S20
DOI: https://doi.org/10.1090/S0002-9939-1995-1242109-7
MathSciNet review: 1242109
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Moišezon theorem is extended to complex spaces with isolated singularities.


References [Enhancements On Off] (What's this?)

  • [1] A. Andreotti and H. Grauert, Théoremes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259. MR 0150342 (27:343)
  • [2] A. Grothendieck, Cohomologie locale des faisceaux coherents et theoremes de Lefschetz locaux et globaux, Adv. Stud. Pure Math., vol. 2, North-Holland, Amsterdam, 1962.
  • [3] H. A. Hamm, Lokale topologische Eigenschaften komplexer Räume, Math. Z. 19 (1971), 235-252. MR 0286143 (44:3357)
  • [4] -, On the vanishing of local homotopy groups for isolated singularities of complex spaces, J. Reine Angew. Math. 323 (1981), 172-176. MR 611450 (82i:32023)
  • [5] A. Markoe, A characterization of normal analytic spaces by the homological codimension of the structure sheaf, Pacific J. Math. 52 (1974), 485-489. MR 0367262 (51:3504)
  • [6] B. G. Moišezon, Resolution theorems for compact complex spaces with a sufficiently large field of meromorphic functions, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 1331-1356; English transl., Math. USSR-Izv. 1 (1967), no. 6, 1331-1356.
  • [7] -, Singular Kählerian spaces, Manifolds-Tokyo 1973 (A. Hattori, ed.), Univ. of Tokyo Press, Tokyo, 1975, pp. 343-351. MR 0379909 (52:813)
  • [8] O. Riemenschneider, Characterizing Moišezon spaces by almost positive coherent analytic sheaves, Math. Z. 123 (1971), 263-284. MR 0294714 (45:3782)
  • [9] Y. T. Siu and G. Trautmann, Gap-sheaves and extension of coherent analytic subsheaves, Lecture Notes in Math., vol. 172, Springer-Verlag, New York, 1971. MR 0287033 (44:4240)
  • [10] C. Vuono, The Kodaira embedding theorem for Kähler varieties with isolated singularities, J. Geom. Anal. 3 (1993). MR 1241510 (94h:32049)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32J20, 14B05, 32S20

Retrieve articles in all journals with MSC: 32J20, 14B05, 32S20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1242109-7
Keywords: Kähler space, Moišezon space, projective embedding
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society