Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ D$-sets and BG-functors in Kazhdan-Lusztig theory


Author: Yi Ming Zou
Journal: Proc. Amer. Math. Soc. 123 (1995), 935-943
MSC: Primary 22E47; Secondary 17B35
DOI: https://doi.org/10.1090/S0002-9939-1995-1242113-9
MathSciNet review: 1242113
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By using Deodhar's combinatorial setting and Bernstein-Gelfand projective functors, this paper provides some necessary and sufficient conditions for a highest weight category to have a Kazhdan-Lusztig theory. A consequence of these conditions is that in the semisimple Lie algebra case, the Kazhdan-Lusztig conjecture on the multiplicities of a Verma module implies the nonnegativity conjecture on the coefficients of Kazhdan-Lusztig polynomials.


References [Enhancements On Off] (What's this?)

  • [BB] A. Beilinson and I. Bernstein, Localization de $ \mathfrak{g}$-modules, C.R. Acad. Scei. Paris Sér. I Math.29 (1981), 15-18.
  • [BG] J. Bernstein and S. I. Gelfand, Tensor products of finite and infinite dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), 245-285. MR 581584 (82c:17003)
  • [BGG] J. Bernstein, I. M. Gelfand, and S. I. Gelfand, Category of $ \mathfrak{g}$-modules, Functional Anal. Appl. 10 (1976), 87-92. MR 0407097 (53:10880)
  • [BK] J. L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981), 387-410. MR 632980 (83e:22020)
  • [CPS1] E. Cline, B. Parshall, and L. Scott, Finite dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85-99. MR 961165 (90d:18005)
  • [CPS2] -, Duality in highest weight categories, Contemp. Math., vol. 82, Amer. Math. Soc. Providence, RI, 1989, pp. 7-22. MR 982273 (90g:17014)
  • [D] V. V. Deodhar, A combinatorial setting for questions in Kazhdan-Lusztig theory, Geom. Dedicata 36 (1990), 95-119. MR 1065215 (91h:20075)
  • [DS] J. Du and L. Scott, Lusztig conjectures, old and new, I, preprint. MR 1293877 (95i:20062)
  • [H] J. Humphreys, Reflection groups and Coxeter groups, Cambridge Univ. Press, London, 1990. MR 1066460 (92h:20002)
  • [KL1] D. Kazhdan and G. Lusztig, Representation of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184. MR 560412 (81j:20066)
  • [KL2] -, Schubert varieties and Poincare duality, Proc Sympos. Pure Math., vol. 36, Amer. Math. Soc., Providence, RI, 1980, pp. 185-203. MR 573434 (84g:14054)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E47, 17B35

Retrieve articles in all journals with MSC: 22E47, 17B35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1242113-9
Keywords: D-sets, BG-functors
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society