A proper action on which is not locally trivial

Authors:
James K. Deveney and David R. Finston

Journal:
Proc. Amer. Math. Soc. **123** (1995), 651-655

MSC:
Primary 14L30; Secondary 14D25

DOI:
https://doi.org/10.1090/S0002-9939-1995-1273487-0

MathSciNet review:
1273487

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The quotient of a proper holomorphic action on is known to carry the structure of a complex analytic manifold, and in the case of a rational algebraic action, the geometric quotient exists as an algebraic space. An example is given of a proper rational algebraic action for which the quotient is not a variety, and therefore the action is not locally trivial in the Zariski topology.

**[1]**J. K. Deveney, D. R. Finston, and M. Gehrke,*actions on*, Comm. Algebra**22**(1994), 4977-4988. MR**1285720 (95e:14038)****[2]**J. K. Deveney and D. R. Finston,*Fields of**invariants are ruled*, Canad. Math. Bull.**37**(1994), 37-41. MR**1261555 (95c:14063)****[3]**A. van den Essen,*Locally finite and locally nilpotent derivations with applications to polynomial flows, morphisms, and**actions*. II, Report 9206, Catholic Univ., Nijmegen.**[4]**A. Fauntleroy,*Geometric invariant theory for general algebraic groups*, Compositio Math.**55**(1985), 63-87. MR**791647 (86m:14008)****[5]**A. Fauntleroy and A. Magid,*Proper**actions*, Duke Math. J.**43**(1976), 723-729. MR**0417196 (54:5254)****[6]**H. Matsumura,*Commutative ring theory*, Cambridge Stud. Adv. Math., vol. 8, Cambridge Univ. Press, Cambridge, 1989. MR**1011461 (90i:13001)****[7]**J. Ohm,*Space curves as ideal theoretic complete intersections*, Studies in Algebraic Geometry, MAA Stud. Math., vol. 20, Math. Assoc. Amer., Washington, DC, 1980. MR**589409 (82f:14051)****[8]**C. S. Seshandri,*Quotient spaces modulo reductive algebraic groups*, Ann. of Math.**95**(1972), 511-556. MR**0309940 (46:9044)****[9]**I. R. Shafarevitch,*Basic algebraic geometry*, Springer-Verlag, Berlin, 1977. MR**0447223 (56:5538)****[10]**D. Snow,*Unipotent actions on affine space*, Topological Methods in Algebraic Transformation Groups, Birkhäuser, Boston, 1989. MR**1040863 (91f:14048)****[11]**L. Tan,*An algorithm for explicit generators of the invariants of the basic*-*actions*, Comm. Algebra**17**(1989), 565-572. MR**981471 (90j:13018)****[12]**J. Winkelmann,*On free holomorphic*C-*actions on**and homogeneous Stein manifolds*, Math. Ann.**286**(1990), 593-612. MR**1032948 (90k:32094)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
14L30,
14D25

Retrieve articles in all journals with MSC: 14L30, 14D25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1273487-0

Article copyright:
© Copyright 1995
American Mathematical Society