Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Knotted symmetric graphs

Author: Charles Livingston
Journal: Proc. Amer. Math. Soc. 123 (1995), 963-967
MSC: Primary 57M25; Secondary 57M15, 57M60
MathSciNet review: 1273507
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a knotted graph in $ {S^3}$ we define the vertex constant group, a quotient of the fundamental group of the complement. For planar graphs the group is cyclic. For graphs with periodic symmetry the group is related to the fundamental group of the branched cover of $ {S^3}$ branched over knots contained in the quotient of the graph under the symmetry. These tools are used to demonstrate that a large family of knotted graphs are not planar.

References [Enhancements On Off] (What's this?)

  • [B] H. Bass and J. Morgan, The Smith Conjecture, Academic Press, Orlando, FL, 1984. MR 758459 (86i:57002)
  • [C] R. Crowell and R. Fox, Introduction to knot theory, Graduate Texts in Math., vol. 57, Springer-Verlag, New York, 1977. MR 0445489 (56:3829)
  • [K1] L. Kauffman, Invariants of graphs in 3-space, Trans. Amer. Math. Soc. 311 (1988), 697-710. MR 946218 (89f:57007)
  • [K2] L. Kauffman, J. Simon, K. Wolcott, and P. Zhao, Invariants of theta-curves and other graphs in 3-space, Topology Appl. 49 (1993), 193-216. MR 1208672 (94e:57010)
  • [Ki] S. Kinoshita, On elementary ideals of polyhedra in the 3-sphere, Pacific J. Math. 42 (1972), 89-98. MR 0312485 (47:1042)
  • [S] M. Scharlemann, Some pictorial remarks on Suzuki's Brunnian graph, Topology '90-Proc. of Ohio State Topology Year (B. Apanasov, W. D. Neumann, A. W. Reid, and L. Siebenmann, eds.), Walter de Gruyter, Berlin, 1992, pp. 351-354. MR 1184420 (94a:57020)
  • [Su] S. Suzuki, Almost unknotted $ {\vartheta _n}$-curves in 3-sphere, Kobe J. Math. 1 (1984), 19-22. MR 784343 (86g:57008)
  • [T] A. Thompson, Polynomial invariants of graphs in 3-manifolds, Topology 31 (1992), 657-665. MR 1174264 (93e:57013)
  • [Y] S. Yamada, A topological invariant of spatial regular graphs (A. Kawauchi, ed.), Knots 90, Walter de Gruyter, New York, 1992. MR 1177441 (93k:57005)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57M25, 57M15, 57M60

Retrieve articles in all journals with MSC: 57M25, 57M15, 57M60

Additional Information

Keywords: Knotted graphs
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society