Hammerstein operators preserving disjointness

Author:
A. V. Koldunov

Journal:
Proc. Amer. Math. Soc. **123** (1995), 1083-1095

MSC:
Primary 47B65; Secondary 46A40, 46B42, 47H99

MathSciNet review:
1212284

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper deals with the problems of a multiplicative representation and of automatic continuity of linear and nonlinear operators preserving disjointness. The operators satisfying a modified Hammerstein condition are introduced and investigated. In §3 we develop a theory of quasi-linear disjointness-preserving Hammerstein operators. As an application we prove that a bijective disjointness-preserving operator between Banach lattices is a continuous d-isomorphism, thus answering in the affirmative a problem posed by Y. Abramovich in 1992. We also construct an example demonstrating that the completeness of the "departure" space cannot be omitted in general.

**[A]**Yuri A. Abramovich,*Multiplicative representation of disjointness preserving operators*, Nederl. Akad. Wetensch. Indag. Math.**45**(1983), no. 3, 265–279. MR**718068****[AAK]**Y. A. Abramovich, E. L. Arenson, and A. K. Kitover,*Banach*-*modules and operators preserving disjointness*, Pitman Res. Notes Math. Ser., vol. 277, Longman Sci. Tech., Harlow, 1992.**[AVK1]**Y. A. Abramovich, A. I. Veksler, and A. V. Koldunov,*Operators preserving disjointness, their continuity and multiplicative representation*, Linear Operators and their Appl., Sbornik Nauchn. Trudov, Leningrad, 1981, pp. 13-34.**[AVK2]**-,*Operators preserving disjointness*, Dokl. Akad. Nauk USSR**248**(1979), 1033-1036.**[AB]**Charalambos D. Aliprantis and Owen Burkinshaw,*Positive operators*, Pure and Applied Mathematics, vol. 119, Academic Press, Inc., Orlando, FL, 1985. MR**809372****[Art]**Wolfgang Arendt,*Spectral properties of Lamperti operators*, Indiana Univ. Math. J.**32**(1983), no. 2, 199–215. MR**690185**, 10.1512/iumj.1983.32.32018**[AH]**W. Arendt and D. R. Hart,*The spectrum of quasi-invertible disjointness preserving operators*, J. Funct. Anal.**68**(1986), no. 2, 149–167. MR**852658**, 10.1016/0022-1236(86)90003-0**[DO]**L. Drewnowski and W. Orlicz,*On representation of orthogonally additive functionals*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**17**(1969), 167–173 (English, with Loose Russian summary). MR**0250055****[Har]**D. R. Hart,*Some properties of disjointness preserving operators*, Nederl. Akad. Wetensch. Indag. Math.**47**(1985), no. 2, 183–197. MR**799079****[HL]**C. B. Huijsmans and W. A. J. Luxemburg (eds.),*Positive operators and semigroups on Banach lattices*, Springer, Dordrecht, 1992. Acta Appl. Math. 27 (1992), no. 1-2. MR**1184871****[HP1]**C. B. Huijsmans and B. de Pagter,*Disjointness preserving and diffuse operators*, Compositio Math.**79**(1991), no. 3, 351–374. MR**1121143****[HP2]**C. B. Huijsmans and B. de Pagter,*Invertible disjointness preserving operators*, Proc. Edinburgh Math. Soc. (2)**37**(1994), no. 1, 125–132. MR**1258036**, 10.1017/S0013091500018745**[Kit1]**A. K. Kitover,*Disjoint operators in Banach lattices*, Dokl. Akad. Nauk SSSR**250**(1980), no. 4, 800–803 (Russian). MR**560379****[Kit2]**-,*Operators preserving disjointness and the mappings of extremally disconnected compact spaces*, Optimizatsiya**40**(1987), 138-149.**[K]**A. V. Koldunov,*Automatic continuity of operators in vector lattices*, Mat. Zametki**50**(1991), no. 4, 67–74, 158 (Russian); English transl., Math. Notes**50**(1991), no. 3-4, 1031–1035 (1992). MR**1162913**, 10.1007/BF01137733**[Ko]**Ignace I. Kolodner,*Equations of Hammerstein type in Hilbert spaces*, J. Math. Mech.**13**(1964), 701–750. MR**0171184****[Kr]**M. A. Krasnoselskii,*Topological methods for non-linear integral equations*, Pergamon Press, New York, 1964.**[P]**A. G. Pinsker,*Analytical representation of some disjointly-additive functionals*, Dokl. Akad. Nauk USSR**18**(1938), 397-401.**[V]**B. Z. Vulikh,*Introduction to the theory of partially ordered spaces*, Translated from the Russian by Leo F. Boron, with the editorial collaboration of Adriaan C. Zaanen and Kiyoshi Iséki, Wolters-Noordhoff Scientific Publications, Ltd., Groningen, 1967. MR**0224522****[W]**A. W. Wickstead,*Representation and duality of multiplication operators on Archimedean Riesz spaces*, Compositio Math.**35**(1977), no. 3, 225–238. MR**0454728**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47B65,
46A40,
46B42,
47H99

Retrieve articles in all journals with MSC: 47B65, 46A40, 46B42, 47H99

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1995-1212284-9

Keywords:
Banach lattice,
disjointness preserving operator

Article copyright:
© Copyright 1995
American Mathematical Society