Representation of a completely bounded bimodule map

Author:
Qi Yuan Na

Journal:
Proc. Amer. Math. Soc. **123** (1995), 1137-1143

MSC:
Primary 46L05; Secondary 46L10, 47D25

MathSciNet review:
1223518

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we give a representation for a completely bounded bimodule map into , where *A* and *B* are unital operator subalgebras of . When *A* and *B* are -subalgebras we give a new proof of the Wittstock's theorem by using this representation. We also prove that a von Neumann algebra is an injective operator bimodule over its unital operator algebras if and only if it is a finitely injective operator bimodule.

**[1]**William B. Arveson,*Subalgebras of 𝐶*-algebras*, Acta Math.**123**(1969), 141–224. MR**0253059****[2]**David P. Blecher, Zhong-Jin Ruan, and Allan M. Sinclair,*A characterization of operator algebras*, J. Funct. Anal.**89**(1990), no. 1, 188–201. MR**1040962**, 10.1016/0022-1236(90)90010-I**[3]**Erik Christensen, Edward G. Effros, and Allan Sinclair,*Completely bounded multilinear maps and 𝐶*-algebraic cohomology*, Invent. Math.**90**(1987), no. 2, 279–296. MR**910202**, 10.1007/BF01388706**[4]**Erik Christensen and Allan M. Sinclair,*A survey of completely bounded operators*, Bull. London Math. Soc.**21**(1989), no. 5, 417–448. MR**1005819**, 10.1112/blms/21.5.417**[5]**Paul S. Muhly and Qiyuan Na,*Extension of completely bounded**bimodule maps*, preprint, 1992.**[6]**-,*Dilation of operator bimodules*, preprint, 1992.**[7]**Vern I. Paulsen,*Completely bounded maps and dilations*, Pitman Research Notes in Mathematics Series, vol. 146, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986. MR**868472****[8]**Vern I. Paulsen,*Every completely polynomially bounded operator is similar to a contraction*, J. Funct. Anal.**55**(1984), no. 1, 1–17. MR**733029**, 10.1016/0022-1236(84)90014-4**[9]**V. I. Paulsen and R. R. Smith,*Multilinear maps and tensor norms on operator systems*, J. Funct. Anal.**73**(1987), no. 2, 258–276. MR**899651**, 10.1016/0022-1236(87)90068-1**[10]**Vern I. Paulsen and Ching Yun Suen,*Commutant representations of completely bounded maps*, J. Operator Theory**13**(1985), no. 1, 87–101. MR**768304****[11]**A. Guyan Robertson,*Injective matricial Hilbert spaces*, Math. Proc. Cambridge Philos. Soc.**110**(1991), no. 1, 183–190. MR**1104613**, 10.1017/S0305004100070237**[12]**Zhong-Jin Ruan,*Subspaces of 𝐶*-algebras*, J. Funct. Anal.**76**(1988), no. 1, 217–230. MR**923053**, 10.1016/0022-1236(88)90057-2**[13]**Zhong-Jin Ruan,*Injectivity of operator spaces*, Trans. Amer. Math. Soc.**315**(1989), no. 1, 89–104. MR**929239**, 10.1090/S0002-9947-1989-0929239-3**[14]**R. R. Smith,*Completely bounded module maps and the Haagerup tensor product*, J. Funct. Anal.**102**(1991), no. 1, 156–175. MR**1138841**, 10.1016/0022-1236(91)90139-V**[15]**G. Wittstock,*Extension of completely bounded 𝐶*-module homomorphisms*, Operator algebras and group representations, Vol. II (Neptun, 1980), Monogr. Stud. Math., vol. 18, Pitman, Boston, MA, 1984, pp. 238–250. MR**733321**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46L05,
46L10,
47D25

Retrieve articles in all journals with MSC: 46L05, 46L10, 47D25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1223518-9

Keywords:
Operator bimodules,
representation,
dilation,
injectivity,
finite injectivity,
finitely generated operator bimodule

Article copyright:
© Copyright 1995
American Mathematical Society