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Abstract. We determine the reducibility and number of components of any

representation of a quasi-split unitary group which is parabolically induced from

a discrete series representation. The -R-groups are computed explicitly, in terms

of reducibility for maximal parabolics. This gives a description of the elliptic

representations.

Introduction

Let G be a reductive p-adic group. That is, G = G(F), where G is a

reductive algebraic group, defined over a p-adic field F of characteristic zero.
Let P = MN be a parabolic subgroup of G. Suppose o is a discrete series
representation of M. Consider the unitarily induced representation Íg,m(o) =

lndp(o ® ljv). We are interested in determining when íg,m(g) is reducible,

and if so, what can be said about the constituents. A complete classification

of the irreducible constituents of the representations íg,m(o) gives rise to a
classification of the tempered spectrum of G.

The theory of F-groups tells one exactly when íg,m(o) is reducible, and

describes the number of irreducible components and their multiplicity. In [4]

we explicitly described all the F-groups for the split classical groups Sp(2n)
and SO(n). In [3] we described the F-groups for SL(n). We now explicitly
describe the structure of the F-groups when G is either of the quasi-split unitary

groups, U(n, n) or U(n, n + 1). These results are remarkably similar to those

for the groups Sp(2n) and SO(2n + 1). Every F-group we consider is of the

form Z2 , and the integer d can be described explicitly in terms of o.
Let Ge be the set of regular elliptic elements of G. Suppose n is an irre-

ducible tempered representation of G with character ©„. Let Ö* denote the

restriction of Qn to Ge. Then n is said to be elliptic if 6£ is nonzero. In [1],

Arthur gives a characterization of the elliptic constituents of íg,m(<?) in terms

of F-groups. In [7], Herb classifies the elliptic representations of Sp(2n) and
SO(n) by using Arthur's description. We describe the elliptic representations
of quasi-split unitary groups by following [7]. Again the results are similar to

those for the split groups.
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In § 1 we will review the theory of intertwining operators and F-groups. In

§2 we will describe the structure of the parabolic subgroups of U(n, n) and
U(n, n + 1). In §3 we compute the F-group attached to any discrete series

representation of any Levi component of G. In §4 we describe the commuting
algebra of Íg,m(°~) and use this to describe the elliptic representations. As
a result of the description of the commuting algebra, we find that every dis-

crete series representation of every Levi component induces with multiplicity 1.
Moreover, every irreducible tempered representation is either elliptic or is irre-
ducibly induced from a tempered elliptic representation of a proper parabolic
subgroup. This is not the case for every group G, as is pointed out in [7].
Further counterexamples can be found in [3].

1. Preliminaries

Let F be a locally compact, nondiscrete, nonarchimedean local field of char-

acteristic zero and residual characteristic qF. Let G be the F-rational points
of a connected reductive quasi-split algebraic group defined over F Let G' be

the set of regular elements of G [6]. We say an element a: of G is elliptic if
its centralizer is compact, modulo the center of G. We denote by Ge the set

of regular elliptic elements of G.
We let %A2(G) denote the collection of equivalence classes of irreducible dis-

crete series representations of G. We write Wt(G) for the collection of equiv-
alence classes of irreducible tempered representations of G. Then ^2(G) c
%t(G). If n e e?t(G), then we write 8„ for the character of n and 6£ for its
restriction to Ge. We say that it is elliptic if 6£ / 0.

We say that M ç G is a Levi subgroup of G if there is a parabolic subgroup

P of G, with M the Levi component of P. Let Ao be a maximal F-split

torus of G, and let <P(G, A0) be the set of restricted roots of G with respect
to Ao- Let A be a collection of simple roots in O. Then the conjugacy classes
of parabolic subgroups are in one-to-one correspondence with the subsets of A
[16]. If 6 c A, then we let Ae c Ao be the subtorus corresponding to 8.
Then Me = Zq(Aq) is the the Levi subgroup corresponding to 6. We denote

by B = TU the Borel subgroup associated to A0 = A0.
LeX M be a Levi subgroup of G. Let (o, V) be a smooth representation

of M. Suppose F = MN is a parabolic subgroup with Levi component M.

We let lndp(o) be the representation unitarily induced by o. Since the class of

Indp((T) depends only on M, and not F, we also write íg,m(g) for Ind^o).

Let A = Ae and M = Me. We denote by W(A) or W(G/A), the Weyl
group Ng(A)/M of G with respect to A. For w e W(A), we make no distinc-

tion between w and a representative for w in Nq(A). If o is an irreducible
smooth representation of M and w e W(A), then we let wo be the repre-

sentation defined by wo(m) = o(w~xmw). We say that er is ramified if there

is some w e W(A),   w ^ 1, so that o ~ wo.
We denote by X(M)F the collection of F-rational characters of M. Then

o = Hom(X(M)F, R) is the real Lie algebra of A, and we let a£ be the
complexified dual of a [6]. There is a homomorphism Hp : M —> a satisfying

ftr.JSMm» = \x(m)\F,    y* e X(M)F, m e M.

Let v e a*c and a e %2(M). We denote the representation Indp (o <g> qFv • Hp{-]) )
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by I(v, o). Let w e W(A), andlet Nw = Unw~xÑw, where Ñ istheunipo-

tent radical opposed to N. Suppose / is a function in the space of I(v, a).

We formally define an operator by

(1.1) A(v,a,w)f(g)=\   f(w-lng)dn.
JNW

We say A(v, a, w) converges if (1.1) converges for each choice of / and g.
Normalizing by a meromorphic scalar factor we obtain a family of intertwining

operators between I(v, a) and I(wv, wo), which are holomorphic on the
unitary axis ia* [14, 16]. We denote these operators by sé(v,o,w) and write

sA(a, w) = s>A(0, a, w). Then these operators satisfy the cocycle condition

(1.2) stf(a, wxw2) =s/(w2o, wx)stf(w2, a).

Theorem 1.1 (Harish-Chandra). Let w e W(A) and a e %2(M). Then there is
a complex number p(v ,o,w) so that, if Haar measure is chosen appropriately,

A(v,a, w)A(wv, wo, w~l) = p(v,o, w)~xyl(G/P),

where yw(G/P) is defined in [6]. Moreover, v^p(v,o,w) is meromorphic

on a*c, and holomorphic and nonnegative on the unitary axis ia*.    D

The scalar p(v, a, w) is called the Plancherel measure attached to v, a,

and w. If w is the longest element of the Weyl group, then we write p(v, a)
for p(v, a, w). We also write p(o) for p(0, a). If M is maximal and proper,
then íg,m(o) is reducible if and only if a is ramified and p(o) ■£ 0 [16,
Corollary 5.4.2.3].

Let W(a) = {w e W(A) \ wo ~ o}. Choose an intertwining operator T(w)
satisfying T(w)(wo) = oT(w). Then sA'(a, w) = T(w)sé(o, w) is a self-
intertwining operator for íg,m(o)- Let C(er) be the commuting algebra of

íg,m(o~)-

Theorem 1.2 (Harish-Chandra, [16, Theorem 5.5.3.2]). The collection

{s/'(a,w) \we W(o)}

spans the commuting algebra C(o).    D

Therefore, we would like to be able to determine a basis for C(o) from

among the operators sé'(a, w). This leads to the construction of the Knapp-
Stein F-group. Let <P(F, A) be the set of reduced roots of P with respect to

A. Lex ße®(P,A), andlet Aß be the torus (kerßnA)0. Suppose Mß is
the centralizer of Aß in G. Note that M is a maximal proper Levi subgroup

of Mß . Let Pß(o) denote the Plancherel measure attached to iMß,M(o)- Let

A' = {ße <D(P, A) | pß(o) = 0}. We let R = {we W(o) \ wß > o', Vß e A'}.
Since pwß(o) = pß(w~xo) [6, p. 183], R = {w e W(a) \ wA' = A'}. Let W
be the subgroup of W(a) generated by the reflections in the roots of A'.

Theorem 1.3 (Knapp-Stein, Silberger [11, 15]). For any o e %i(M), W(a) =
R k W. Furthermore, W = {w e W(o) \ sA'(a, w) is scalar}.    D

Therefore, {sé'(a, w) \ w e R} is a basis for the commuting algebra C(o).
However, we can say even more. If w\, w2 e R, then

j*'(a,w\w2) = n(wx, w2)stf'(o,Wx)sJ'(o,w2),
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where the 2-cocycle n : R x R —► C* satisfies

T(wxw2) = n(wx, w2)T(wx)T(w2).

Theorem 1.4 (See [10]). (a) C(o) ~ <C[R]n, where £[R\n is the group algebra
twisted by the cocycle n.

(b) Suppose R is abelian and r\ splits, i.e., C(a) ~ C[F]. Then íg,m(o)

decomposes with multiplicity one.   D

The number of inequivalent constituents is equal to the number of irreducible

representations of F, and the irreducible component corresponding to p e R

appears with multiplicity dim p. Let %A be the space of lndp(o). Let np be

the irreducible constituent corresponding to p, and let 6P be the character of
p. We define an operator s¡Ap by

sAp = |F|-1dim P ^T Bp(w)sA'(o, w).
weR

Then {sAp \ p e R) is a collection of nonzero [15] orthogonal projections, and
ßAp = stfpiAA is the itp isotypic subspace of %A. Note that if F is abelian and r\

splits, then %?p = {v e %A \ sé'(w, a)v = p(w)v for all w e R} and (np, ^Ap)
is irreducible [10].

We now recall some results of Arthur [1] and Herb [7] on elliptic represen-

tations. For each w e F define Ou, = {H e a \ w • H = H}. Let Z be the split

component of G, i.e., the maximal F-split torus in the center of G ; and let

3 be the real Lie algebra of Z. Then jcou for each w e R. Let o« =  f| <*w-
w€R

We state a weak version of Arthur's theorem. The hypotheses will apply in all

of our examples.

Theorem 1.5 (Arthur [1, Proposition 2.1]). Suppose R is abelian and C(o) ~

C[F]. Then the following are equivalent:

(a) íg,m(o) has an elliptic constituent,

(b) all the constituents of íg,m(o) are elliptic,
(c) there is a w e R so that o^ = 3.    D

For the remainder of this section we suppose F is abelian and C(o) ~ C[F].

Suppose M' D M is a Levi subgroup of G satisfying Arthur's compatibility

condition with respect to A' [1, §2]. Then F' = F n W(M'fA) is the F-

group attached to Ím* ,m(g). If k' e R', then we let xK> to be the irreducible

component of iM> ,m(o) corresponding to k'. Let R(k') = {k e R \ k(w) =
k'(w), Vw e R'}. We let nK be the irreducible constituent of íg,m(o) corre-

sponding to K.

Theorem 1.6 (Arthur [1, §2]). For any k' e R', iG,M'(?K') =    0   nK.   D
KeR(K')

Proposition 1.7 (Herb [7]). Suppose R is abelian and C(o) ~ C[F]. Let n be

an irreducible constituent of íg,m(g)- Then n = ÍG,M'(t) for a proper Levi

subgroup M' and some x e &t(M'), if and only if o« jí 3. Moreover, M'

and r can be chosen so that x is elliptic if and only if there is a Wo e R with

0-R = Otuo-
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2. Parabolic subgroups of U(n, n) and U(n, n + 1)

Let E/F be a quadratic extension of locally compact, nondiscrete, nonar-
chimedean fields of characteristic zero. Let x .-► x be the nontrivial element

of Gal(F/F). Choose an element ß e E such that F = F(ß) and ß = -ß.

LeX G = U(n, n) or U(n, n + 1). We define /„ ,   J„ by

*-(-« "")  and *-(_„, ' "")•

Then
U(n ,n) = {ge GL(2n, E) \ <gj„g = J„),

U(n,n + l) = {ge GL(2n + 1, F) | 'gj^g = J'n}.

Each of these groups is quasi-split, but not split. Let T be the maximal torus

of diagonal elements in G. For notational convenience, we denote a diagonal

element of GL(k, E) by diag{xi, ... , xk}. Then

T = {diag{A,, X2,...,Xn,lrl,... ,l-x}\kteF*}

if G = £/(/!, ri), and

r={diag{A1,...,An,>;,/-1,...,Ä-1}|/,6F*,j;>7=l}

if G = U(n, n + I). Let A0 be the maximal F-split subtorus of T. Then
Ao is the collection of elements in T with each X¡ e F*, and y = 1 if
G = t/(«, « + 1). Notice that 3, the real Lie algebra of the split component Z
of G, is {0}.

Let <P(G, Ao) be the restricted roots of G with respect to A0. We choose
the ordering on the roots so that the Borel subgroup is the collection of upper
triangular matrices in G. If G = U(n, n), then 0(G, A0) is of type C„,
while if G = U(n, n + 1), then <P(G, A0) is of type BCn. Let A be the
simple roots given by A = {a,}^=1, with a, = e¡ - <?,+. , 1 < / < n — 1,

a„ = 2e„ if G = U(n, n),  and a„ = e„ if G = í/(n, « + 1).
The Weyl group W(G/Ao) is isomorphic to 5„ k Z". Here 5„ acts by per-

mutations on the matrix entries A,, 1 < i < n. We use standard cycle notation
for the elements of S„. Thus, (ij) interchanges A, and Xj. If c, is the non-

trivial element of the ixb copy of Z2, then c, interchanges A/ and A"1. The
element c, is called a sign change, because the action of c, on 0(G, A0) takes
e, to -e,. Any element which is a product of sign changes is also called a sign
change.

Let 9 c A. Suppose 6\ U Ö2 • • • U 6k is the decomposition of 9 as a disjoint
union of connected components of the Dynkin diagram. We assume that if

an e 9, then an e 9k. LeX n¡ = |0,| -1- 1, unless an e 9 and i = k, in

which case we let nk = \9k\. LeX Ae be the subtorus of Ao associated to 9.
Let G = U(n, n). We denote a diagonal matrix which is scalar in blocks by
diag{xi/mi, ... , xrIm,}, where the m, are the appropriate dimensions. Then,
if a„ i 8,

Ae = {diag{/,/„,,..., kkI„k, XTxIni,..., X^I„k}\X¡ e F*} .
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If an e 9, then

Ae = {diagJAj/«,, ... , Xk_xlnk_,, hnk, ¿ï"1/«,, ••• , ̂ l,/„,_,} | A,- e F*} .

If G= £/(«, n+1), then

¿0 = {diag{Ai/„, , ... , Afc/„,, 1, A"1/«,, ... , A^1/^} |A,- 6 F*} ,

if a„ £ 0 and

^e = {diag{Ai/„,,..., Afc_iZ„fc_l, /2Bjk+i, XrxIni,... , A*!,/»»..} |A¿ e F*}

if a„ e 0. Let Mg be the centralizer of Ae. A straightforward matrix compu-
tation gives a proof of the following lemma.

Lemma 2.1. Let 0 c A. Then there are integers «■, ... , nr > 0 and m > 0,

so that «i-l-V nr + m = n, and

Me ss GL(nx, E) x ■■■ x GL(nr, E) x G(m),

where
(U(m,m) ifG=U(n,n),

[   '     \U(m,m + l)    ifG=U(n,n+l).

Note that we adopt the convention that

G(0) = il ifG=U(n,ri),

y '     \ U(l)    ifG = U(n,n + l).

Suppose we write a e Ae as a = (Xx, ..., Xr), with each A, e Fx. The
Weyl group W(G/A6) is a subgroup of Sr k 1I2. Namely, for (if) e Sr, (ij) e
W(G/A0) if and only if «, = n¡. In this case

('7) * (Ai • • • • > Xr) = (Xx, ... , Xi-x, Xj, ... , Xj-x, X¡, ... , Xr).

For each 1 < i < r, there is a block sign change C, e W(G/A$), such that

Ci'(Xx, ..., Xr) = (Xx, ... , X~x,... , Xr). We use the term "block sign change"

because C, is the product of the n¡ sign changes c¿¡+-, ... , Ct,j+n¡ e ¡V(G/A0),
where bt = £;<1- *}•

If g e Md, we write g = (gx, ... , gr, g'), with g¡ e GL(n¡, E) and
g' e G(m). If (ij) e W(G/Ae), then

(ij) ' g = (gl , ■ ■ ■ , gi-l , gj , ■ ■ ■ , gj-l , g,, ■■■ , gr, g')-

For 1 < i < r we have Q • g = (gx,... , g¡-x, e(g¡), ... , gr, g'), where e is

the automorphism of GL(n¡, E) given by e(g.) = 'gr1. We fix a subset 0 c A,

and write A = Ae and M = Me. Let o e %A2(M). Then a ~ ax ® • • • ® or ® /?,
where er, e %A2(GL(ni, E)) and /? e %2(G(m)). By the above calculations, we

see that C.tr ~ tri ® • •• ® <rf ® ••• ® 07 ® p, where trf(^/) = er,(e(g,)). If

s£pS,n W(G/A), then so = ctj(1) ® • • • ® fjj(r) ® p. Note we can write the
conditions for er to be ramified as follows:

C/cr ~ o <& o,p ~ of,

(ij)cT ~ a •» ct,- ~ 07,

(ij)CiCjO ~o <*Oi~ a).
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That is, if o is ramified, then at least one of these conditions holds. If 1 <

i < j < r — 1, we denote the reduced root ebj - ebj+l by ay. We write

ßij = eb¡,+ eb +1. If 1 < i < n, then we let

2ebt    if G =U(n,n),

eb¡      ifG=U(n,n + l).

Then {a¡j, ßij}i<j U {ay¡ \ ay¡ e <P+}i<,<r constitutes a collection of positive

reduced roots Ó(F, A).

»-{

3. F-groups for U(n, n) and U(n, n + 1)

For ß e <P(.P, A), the Levi subgroup Mß is the centralizer of (Ankerß)°,

and Pß(o) is the Plancherel measure associated to ímb,m(o)- Thus, pß(o) = 0

if and only if there is some w ^ 1 in W(Mß/A) such that wo ~ o, and

iMß,M(o) is irreducible. We denote by A' the collection of ß e <P(/>, A) such

that Pß(o) = 0. Then

R = {we W(o)\wß > 0, VyS e A'}.

Lemma 3.1. Let M be a standard Levi subgroup of G. For any a e %2(M),

the reduced root a¿j e A' if and only if o¡ ~ Oj+\. Similarly, ß^ e A' if and
only if o i ~ oej+v

Proof. Note that

M.,,*    n    GL(nk,E)xGL(m + nj+x,E)xG(m)

and

k&J+l

,» = /«
[} if m ¿rij+x.

W(MßlA) = { ^
((i(j+l)))    if ni = nj+x,

Thus, the result for a,; follows from the work of Ol'sanskii [12], Bernstein and

Zelevinski [2], and Jacquet [8] (see [4, Lemma 3.4]). Note that ßij = Cj+x(a¡j).
Therefore,  Pß (o) = pa¡J(Cj+x • o).  Thus,  Pfi¡¡(o) = 0 if and only if o¡ ¡a

°j+v    D

The following lemma is critical to our argument. Its proof is identical to a

lemma of Keys [9].

Lemma 3.2. Let w = se e R,  with s eSr and c e IA2. Then s = 1.

Proof. By conjugating by a sign change we may assume that c changes the sign

of at most one eb¡ in each orbit of s. Suppose that í has a nontrivial cycle,
which we may assume is of the form (1, ... , j + 1). Suppose c changes no

signs among {ebl,... , eb+l}. Since w e R, we have ox ~ o2 ~ ■•• ~ a¡+\.

Therefore, by Lemma 3.1, a>; e A'. However, wctxj < 0, contradicting the

assumption that w e R. Now suppose c changes the sign of ebj+[. Then wo ~

<7 implies <Ti s ••• s <T/+i s <rf. Therefore, by Lemma 3.2, /?<, e A' and
wßxj = s • ctxj < 0. This contradicts our assumption that w e R.    D

Definition 3.3. Let a e g2(GL(k, E)) and p e %2(G(m)). We say that the
condition %Amtk,G(a®P) holds if iG<m+k),GL(k,E)xG(m)(° ® P) is reducible.
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Note that if G = G(n) = G(m + k) and M = GL(k, E) x G(m), then M
is the maximal proper Levi subgroup of G determined by omitting the simple
root

{ek-ek+i   ifm>0;

2e„ if m = 0, G = U(n,n);

en if m = 0, G =U(n,n +I).

Thus, %?mtk,G(a ® P) holds if and only if a ~ er6 and pa(o) ¿ 0.

Remark. If m = 0, then [5] determines this condition in terms of lifting
from U(k). Using the methods of [13], we hope to determine the condition

^G,m,k(a® P) explicitly for all m. This will be the subject of joint work with
Shahidi.

Theorem 3.4. Let G = U(n, n) or U(n, n + 1). Let P = MN be a parabolic
subgroup of G. Suppose that M ~ GL(nx, E) x ■■■ x GL(nr, E) x G(m). Let

o e %2(M), with a ~ ox ® • • • ® or ® p. Let d be the number of inequivalent

Oi suchthat SAm,n¡,G(oi® P) holds. Then R~7L2.

Proof. By Lemma 3.2, F c 1A2, the subgroup of sign changes in W(G/A).

For w e W(G/A), we let R(w) = {a e <b(P, A) | wa < 0}. Suppose c =

Cx • • • Cj: e F. Since c e W(o), o¡ ~ of for 1 < i < j. Therefore, C, € W(a)
for 1 < i < j. Note that R(C¡) C R(c). Since c e R, R(c) n A' = 0. Thus,
for 1 </'</, F(C,) n A' = 0, and hence C, e R. Therefore, F is generated
by single block sign changes C,. Note that

R(d) = {aik , ßik}i<k<r-x U ({ayi}a=i,2 n<D+).

Suppose a, ~ of. By Lemma 3.1, aik , ßik e A' if and only if ct, ~ ok+l. By
inspection, ay¡ e A' if and only if ^,n(,c(o'/ <8> p) does not hold. Therefore,
C, e R if and only if a, ■£ ok for all k > i, and Sfm p n¡ t g(o¡ ® p) holds. Thus,
there is one generator of F for each equivalence class among the o¡ such that

%Am,n,,G(Oi® P)  holds.    D

4. Elliptic representations of U(n, n) and U(n, n + 1).

In this section we use the arguments of [7] to describe the elliptic represen-
tations of U(n, n) and U(n, n + 1). Notice that it is the manner in which the

structure of the parabolics and F-groupsfor U(n, n) (respectively U(n, n+l))

parallels those for Sp(2n) (respectively SO(2n + 1)) which allows us to use
these arguments.

Proposition 4.1. Let G = U(n, n) or U(n, n+l). Suppose M is any Levi

subgroup of G, o e W2(M), and R is the reducibility group associated to
íg,m(g)- Then the commuting algebra C(o) ~ C[F].

Remark. By Theorems 1.4(b) and 3.4, this proves that every Íg,m(o) decom-

poses with multiplicity one.

Proof. We need to show that we can choose intertwining operators Tw , we

R, so that Tw(o) = woTw and TW{Wl = TWlTW2. Suppose a = Ox ®- ■%or®p

and o acts on V = V\ ® • • • ® Vr ® V.
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If d e W(o), then o¡ ~ of. Let F. : V¡ -> V¡ satisfy Fa, = ofT¡. Since
e2 = 1, we must have Tf = XIv¡, with X e C*. Therefore, without loss of

generality, we can assume that Tf = Iy, ■ Now extend T¡ to V by setting

TA(vx ® • • • ® vr ® v') = Vx ® • • • ® TiVi ® • • • ® vr ® v'.

Then TYo = (Qo)TA and (F;K)2 = 1. Suppose i < j and Q.Cj e W(o).

Then TYtJ = TYtY . Let Tc¡ = Tf. If c e R and c = ChCh ■ ■ ■ Ch , then
Tc = Tq ••• Tçt is an intertwining operator between o and co. Moreover, the

commutativity of the operators Tq , and our normalization, guarantees that

Tcc, = TCTC. for all c, c' e R.    U

Lemma 4.2. For any a e %A2(M), there is a Wo e R with ^ = <xr. Further,

aR = {0} if and only if F ~ 1A2.

Proof. By Theorem 3.4, we know F ~ Z2 and F c (Cx, ... , Q). We can
assume that F = (Cx, ... , Cd). Let Wo = C< • ■ • Cd. Then, for all w e R,
thus ç &U,, and thus, a„,0 = a*. If w e (Ci, ... , Q and o^ = {0}, then
w = Cx ■ • • Cr. Therefore, aR = {0} if and only R~1A2.    D

Theorem 4.3. Let G = U(n, n) or U(n, n + 1). Let M be a Levi component

of G with M = GL(nx, E) x ■■■ x GL(nr, E) x G(m). Then the following are
equivalent:

(a) íg,m(o) has an elliptic constituent,

(b) all the constituents of íg,m(o) we elliptic,

(c) F~Z2.

Proof. By Theorem 3.4, F ~ %{, and, by Proposition 4.1, C(<r) ~ C[F].
Therefore, by Theorem 1.5, (a) and (b) are equivalent, and both are equivalent

to the existence of a wo e R with aWo = {0}. Thus, by Lemma 4.2, (a) and (c)
are equivalent.   D

The next result is now a direct consequence of Proposition 1.7.

Proposition 4.4. Let G = U(n, n) or U(n, n + 1). Let n e %¡(G). Then n is

either elliptic or n = íg,m(^) for some proper Levi subgroup M of G and some

elliptic x e %t(M).    D

Suppose F ~ 1A2. For every k e R, we let z(k) = k(Cx ---Cr) = ±1. Let

1 € F denote the trivial character.

Proposition 4.5. Suppose R ~ 1A2 and k e R. Let nK be the corresponding
irreducible constituent of íg,m(o) and Qk its character. Then 6£ = e(ic)&¡.

Proof. For 1 < / < r, we let M¡ be the maximal Levi subgroup of G contain-

ing M, suchthat M ~ GL(n¡)xG(n-ni). Lex F, denote the F-group attached

to ím¡,m(o). Then, by Theorem 3.4, F, ~ Zip1 and is generated by {Cj}^.

Thus, by Theorem 4.3, every irreducible constituent x of ím¡,m(o) is elliptic.

Let k, e Ri, and let R(k,) = {at, k~), where Kt(C¡) = 1 and k~(C¡) = -1.
Now, by Theorem 1.6, Íg.mX^k,) = nK+ ® nK-. Therefore, 6£+ = -&_.

Now we proceed by induction. Let s(k) be the number of indices, 1 < i <

r,  such that k(C¡) = -1. If s(k) = 0,  then k = 1,   e(tc) = 1,  and the
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proposition is trivially true. Suppose it is true for s(k) = s. Suppose s(k) =

5+1. Let / be an index with k(Q) = -1, and let /c, = K\Rr Then k = k~

and s(rct) = s. Therefore,

e£ = eeK. = -eeKÎ = -e(K+)e\ = (-iy+xe\ = er*)©?, d
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